

Chair of Reservoir Engineering

Extension and Uncertainty Modeling of Imbibition Processes using the Morphological Method – a Reality Check

Pit Arnold, Mario Dragovits, Sven Linden, Fatime Zekiri und Holger Ott

InterPore Abu Dhabi; 29 May – 3 June, 2022

ID: 463, MS06-A

20.05.2022 • Pit Arnold

Morphological modelling approach

Basic morphological operations, i.e. dilation and erosion, on the pore space

Identification of pore throat sizes – purely geometrical

Morphological modelling approach

Basic morphological operations, i.e. dilation and erosion, on the pore space

Identification of pore throat sizes – purely geometrical

Identification of pore volume (Saturation) connected at certain pc

Morphological modelling approach,

Basic morphological operations, i.e. dilation and erosion, on the pore space

Identification of pore throat sizes – purely geometrical

Identification of pore volume (Saturation) connected at certain pc

Morphological modelling approach

Basic morphological operations, i.e. dilation and erosion, on the pore space

Identification of pore throat sizes – purely geometrical

Identification of pore volume (Saturation) connected at certain pc

Different pathways by applying multiple contact angles, θ

MM population to relative permeability

MM population

Morphological Invasion Step

$$P_c = \frac{2\sigma\cos\theta}{r}$$

Navier-Stokes Simulations

Effective
permeability
simulation on
connected path
ways

But what about imbibition?

Initial imbibition modelling

Single process only (drainage or spontaneous imbition)

Forced imbibition = ?

Problem

Limited saturation range for P_c and k_r :

→ Early cutoff of relative permeability data and mismatch

Solution:

Stopping criteria to avoid total disconnection before starting to couple forced process

Steady state data set

Implementation of non-wetting material Stochastic vs. Deterministic

2) Larger pores considered

Stochastic field modelling – region size and solid volume percentage (SVP) are defined

Deterministic modelling – pore space considered (PSC) for implementation of non-wetting material is defined

1) Pore size distribution

20.05.2022 • Page 10

Capillary Pressure Curves Stochastic vs. Deterministic

Capillary Pressure Curves Stochastic vs. Deterministic

Observations:

Stochastic: change of drainage as well **Deterministic:** more like an aging process

Uncertainty modeling by variation of pathways

Both methods show right physical trends

But: Comparison to reality

Relative Permeabilities Initial Implementation vs. experimental data

Synchrotron Data = actual fluid distributions

NS Simulation on MM populated vs. experimental measured

→ Mismatch

Berg et. al, 2016

Relative Permeabilities Full imbibition modelling vs. experimental data

Best Match:

- O Deterministic
- Stochastic
- Simulating forced imbibition only
- Not using strong wetting conditions $(\theta = 40^{\circ})$

Relative Permeabilities Full imbibition modelling vs. experimental data

Uncertainty Modelling by:

- Varying contact angles
- Changing size and volume of nonwetting material

Special thanks to Steffen Berg for his support

Questions?

pit.arnold@unileoben.ac.at

