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Introduction

Laboratory tests have confirmed that enhanced oil recovery can be obtained from sandstone and
carbonate reservoirs by performing a tertiary low salinity waterflooding, but there is no consensus on a
single mechanism delineating this effect.
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Low salinity waterflooding on EOR 

Fredriksen (2020)

Fakcharoenphol, Perapon, et al., 2014



Salinity contrast effects observed in experiments

Introduction

Sandengen et al. (2016)
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Mahani, Hassan, et al. (2015)

Aldousary, S., & Kovscek, A. R. (2019) Du, et al.,(2019)

Mohammadi, M., & Mahani, H. (2020) 



Monitoring oil globules for 40 days!

After 1 day

LSW Crude oil LSW Crude oil LSW Crude oil

Angle= 62.86° Angle= 38.75° Angle= 32.60°

After 15 day After 40 day

Introduction

Yan, L., et al., 2020. Fuel, 274, p.120798.

Our previous works and findings
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Research questions

1. For a system of LSW/pure oil/HSW (without surfactant)

• How to quantify the osmosis effect (water diffusion in oil phase) on oil 
remobilization?

2. For a system of LSW/oil+surfactant/HSW

• What is the contribution of emulsification on the water transport? 
• What is the driving force for the emulsion transport?
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How the osmosis and emulsification work on oil remobilization?



Flooding processes:
• Oil-wet chips modification
• High salinity water saturation
• Oil flooding
• Low salinity water flooding
• Sealing chips and monitoring area of interest 
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Pore-scale laboratory works
Microfluidic experiments

Expected fluid contacts we want to create in microfluidics:

• White spaces are grains.
• 20 µm thick pore spaces
• 0.56 porosity 
• 2.5 Darcy permeability
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Experiments in microfluidics

Exp. No Series Oil type Trapped brine (% w/w) Flooding water (% w/w) Info.
1

Without 
surfactant

n-heptane HSW (20%) LSW (0.2%)

2 n-heptane HSW (20%) LSW (5%)

3 n-dodecane HSW (20%) LSW (0.2%)

4 n-dodecane LSW (0.2%) LSW (0.2%) reference

5 n-heptane LSW (0.2%) LSW (0.2%) reference
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With 
surfactant

n-heptane+1% SPAN80 HSW (20%) LSW (5%)

7 n-heptane+2% SPAN80 HSW (20%) LSW (5%)

8 n-heptane+2% SPAN80 HSW (20%) LSW (0.2%)

9 n-dodecane+2% SPAN80 HSW (20%) LSW (0.2%)

10 n-dodecane+2% SPAN80 HSW (20%) LSW (5%)

11 n-dodecane+1% SPAN80 HSW (20%) LSW (0.2%)

12 n-dodecane+1% SPAN80 LSW (0.2%) LSW (0.2%) reference

13 n-heptane+1% SPAN80 LSW (0.2%) LSW (0.2%) reference
Note: HSW, NaCl, CaCl2·2H2O, MgCl2·6H2O; LSW is obtained from the HSW dilution; SPAN80 is an oil-soluble surfactant. CMC in dodecane 
is 8.14 mg/L. 1% SPAN80 is around 7,500 mg/L.

Type of experiments
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Microfluidic experiments
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Experiment No.1: Heptane-1.7-170 g/L

HSW areas of two regions grew by 119.4% and 261.3%, 
respectively, while the heptane areas almost had no change. 
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Microfluidic experiments
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The high-salinity brine got expanded by 41.21% over 70 
hours of monitoring.

Experiment No.3: Dodecane-1.7-170 g/L

0 10 20 30 40 50 60 70 80
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

 HSW Region 1
 Dodecane Region 1
 HSW Region 2
 Dodecane Region 2

Ar
ea

 ch
an

ge
 (μ

m
2 )

Time (hour)



10

Microfluidic experiments

Heptane, salt contrast: 50-170 g/L

Dodecane, salt contrast: 50-170 g/L
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Microfluidic experiments
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Surfactant added experiments (Heptane + 1% SPAN80)

The high-salinity brine got expanded by 
76.31% over 70 hours of monitoring.
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Surfactant added experiments (Dodecane + 1% SPAN80)

Microfluidic experiments

The high-salinity brine got expanded by 
71.9% over 70 hours of monitoring.



Microfluidic experiments
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Reference experiments (LSW/Alkane/LSW)

No expansion of HSW during observation in both types of experiment.

After 1 hour After 24 hours

Without surfactant

With surfactant



Microfluidic experiments
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Visualization of spontaneous emulsification (Dodecane + SPAN80)

Clearly see the emulsion aggregation at the LSW-Oil interface, but not at HSW-oil side!
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Visualization of HSW bubble burst

Microfluidic experiments
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Molecular Dynamic Simulation

• The system contained 705 heptane molecules and 
16374 water molecules (half on each side). 

• Three types of systems with ion concentration 
differences between two water-solution layers of 0%-
0%, 0%-5%, and 0%-20% were modelled

• LAMMPS Molecular Dynamics Simulator, Temperature 
(90oC), Simulation time (50ns)

MD simulation domain
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Molecular Dynamic Simulation

(a) A typical migration trajectory of a water molecule across the oil phase (the 
abrupt steps of trajectory in the oil phase resulted from the periodic boundary 
condition of the simulation box.);

(b) Comparison of net inflow of water molecules into the SW phase in the three 
model systems.

Water diffusion across the oil phase and net inflow 
in the systems. 

(a) Density profiles of the major components in the 0%-20% system; 
(b) Interfacial tension and thickness monitored in the three model 

systems with different salinity;
(c) The MSD of water molecules in the water and solution phases in 

the three model systems.

Molecular scale water dynamics. 



Conclusions

o We have confirmed that water diffusion and emulsification give their individual
contributions on trapped oil remobilization and have quantitatively evaluated
their effects.

o With the presence of surfactant, the water transport in oil gets accelerated to a
large extent.

o High salinity and low concentration of hydrocarbon soluble SPAN 80 both inhibit
the generation of water-in-oil emulsion, inducing slower remobilization of the
constrained oil.

o Molecular dynamic simulation is conducted and verifies that the salinity has the
effect on the water molecule diffusion in pure alkanes.

18


	Water transport in n-alkane phases through diffusion and emulsion: insights into oil remobilization from a pore-scale perspective
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

