

INTERPORE2022

16-May-22

Water transport in n-alkane phases through diffusion and emulsion: insights into oil remobilization from a pore-scale perspective

Lifei Yan (Utrecht University) Yuanhao Chang (Ph.D., NTNU) Majid Hassanizadeh (Utrecht University) Mohammad Hossein Golestan (Ph.D., NTNU) Carl Fredrik Berg (NTNU) Amir Raoof (Utrecht University)

Introduction

Low salinity waterflooding on EOR

Fakcharoenphol, Perapon, et al., 2014

Laboratory tests have confirmed that enhanced oil recovery can be obtained from sandstone and carbonate reservoirs by performing a tertiary low salinity waterflooding, but there is no consensus on a single mechanism delineating this effect.

Introduction

Salinity contrast effects observed in experiments

Mahani, Hassan, et al. (2015)

Du, et al.,(2019)

C-3)

C-4)

C-2)

C-1)

Mohammadi, M., & Mahani, H. (2020)

Utrecht University

Introduction

Monitoring oil globules for 40 days!

Yan, L., et al., 2020. Fuel, 274, p.120798.

How the osmosis and emulsification work on oil remobilization?

- 1. For a system of LSW/pure oil/HSW (without surfactant)
 - How to quantify the osmosis effect (water diffusion in oil phase) on oil remobilization?
- 2. For a system of LSW/oil+surfactant/HSW
 - What is the contribution of emulsification on the water transport?
 - What is the driving force for the emulsion transport?

Pore-scale laboratory works

Microfluidic experiments

Crude oi

Flooding processes:

- Oil-wet chips modification
- High salinity water saturation
- Oil flooding •

Utrecht University

- Low salinity water flooding
- Sealing chips and monitoring area of interest

Expected fluid contacts we want to create in microfluidics:

----- Alkane

Experiments in microfluidics

Type of experiments

Exp. No	Series	Oil type	Trapped brine (% w/w)	Flooding water (% w/w)	Info.
1	Without surfactant	n-heptane	HSW (20%)	LSW (0.2%)	
2		n-heptane	HSW (20%)	LSW (5%)	
3		n-dodecane	HSW (20%)	LSW (0.2%)	
4		n-dodecane	LSW (0.2%)	LSW (0.2%)	reference
5		n-heptane	LSW (0.2%)	LSW (0.2%)	reference
6	With surfactant	n-heptane+1% SPAN80	HSW (20%)	LSW (5%)	
7		n-heptane+2% SPAN80	HSW (20%)	LSW (5%)	
8		n-heptane+2% SPAN80	HSW (20%)	LSW (0.2%)	
9		n-dodecane+2% SPAN80	HSW (20%)	LSW (0.2%)	
10		n-dodecane+2% SPAN80	HSW (20%)	LSW (5%)	
11		n-dodecane+1% SPAN80	HSW (20%)	LSW (0.2%)	
12		n-dodecane+1% SPAN80	LSW (0.2%)	LSW (0.2%)	reference
13		n-heptane+1% SPAN80	LSW (0.2%)	LSW (0.2%)	reference

Note: HSW, NaCl, CaCl₂·2H₂O, MgCl₂·6H₂O; LSW is obtained from the HSW dilution; SPAN80 is an oil-soluble surfactant. CMC in dodecane is 8.14 mg/L. 1% SPAN80 is around 7,500 mg/L.

Experiment No.1: Heptane-1.7-170 g/L

Experiment No.3: Dodecane-1.7-170 g/L

The high-salinity brine got expanded by <u>**41.21**</u>% over 70 hours of monitoring.

Heptane, salt contrast: 50-170 g/L

ð

Utrecht University

0 hr 24 hr 48 hr 70 hr 170 g/L HSW 170 g/L HSW 170 g/L HSW 170 g/L HSW Heptane Heptane Heptane Heptane 50 g/L LSW 50 g/L LSW 50 g/L LSW 50 g/L LSW 100 µm 100 µm 100 µm 100 µm 24 hr 0 hr 48 hr 70 hr 1.7 g/L LSW 1.7 g/L LSW 1.7 g/L LSW 1.7 g/L LSW 170 g/L HSW 170 g/L HSW 170 g/L HSW 170 g/L HSW Dodecane, salt contrast: 50-170 g/L Dodecane Dodecane 100 µm Dodecane Dodecane 100 µm 100 µm 100 µm 9x10⁻⁶ -■- Heptane_1.7 g/L_Region 1 Heptane_1.7 g/L_Region 2 22000 60000 8x10⁻⁶ -D-HSW Region Heptane_50 g/L 20000 △ Dodecane Region 50000 □- Dodecane_1.7 g/L_Region 1 7x10⁻⁶ 18000 (µm²) □- Dodecane_1.7 g/L_Region 2 change (µm²) 16000 6x10⁻⁶ 40000 O- Dodecane 50 g/L 14000 change 12000 5x10⁻⁶ 30000 10000 4x10⁻⁶ 8000 Area Area 20000 6000 3x10⁻⁶ 4000 -D-HSW Region 10000 Heptane Region 2x10⁻⁶ 2000 0 0 0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 1x10⁻⁶ 0 Time (hour) Time (hour) 0 150 200 250 300 350 400 0 50 100

Surfactant added experiments (Heptane + 1% SPAN80)

Surfactant added experiments (Dodecane + 1% SPAN80)

Reference experiments (LSW/Alkane/LSW)

Without surfactant

No expansion of HSW during observation in both types of experiment.

Grain

After 24 hours

0.2% LSW

- 0.2% LSW

Dodecane

+1%SPAN80

Visualization of spontaneous emulsification (Dodecane + SPAN80)

^{Utrecht University} Clearly see the emulsion aggregation at the LSW-Oil interface, but not at HSW-oil side!

Visualization of HSW bubble burst

60 hour

MD simulation domain

- The system contained 705 heptane molecules and 16374 water molecules (half on each side).
- Three types of systems with ion concentration differences between two water-solution layers of 0%-0%, 0%-5%, and 0%-20% were modelled
- LAMMPS Molecular Dynamics Simulator, Temperature (90°C), Simulation time (50ns)

Molecular Dynamic Simulation

Water diffusion across the oil phase and net inflow ⁽ in the systems.

- (a) A typical migration trajectory of a water molecule across the oil phase (the abrupt steps of trajectory in the oil phase resulted from the periodic boundary condition of the simulation box.);
- (b) Comparison of net inflow of water molecules into the SW phase in the three model systems.

Molecular scale water dynamics.

- (a) Density profiles of the major components in the 0%-20% system;
- (b) Interfacial tension and thickness monitored in the three model systems with different salinity;
- (c) The MSD of water molecules in the water and solution phases in the three model systems.

- We have confirmed that water diffusion and emulsification give their individual contributions on trapped oil remobilization and have quantitatively evaluated their effects.
- With the presence of surfactant, the water transport in oil gets accelerated to a large extent.
- High salinity and low concentration of hydrocarbon soluble SPAN 80 both inhibit the generation of water-in-oil emulsion, inducing slower remobilization of the constrained oil.
- Molecular dynamic simulation is conducted and verifies that the salinity has the effect on the water molecule diffusion in pure alkanes.

