Microfluidic study of biomass-growth induced changes on hydraulic properties. Investigation of growth characteristics under varying nutrient gas environments.

Patrick Jasek, Neda Hassannayebi, Boris Jammernegg, Holger Ott

Chair of Reservoir Engineering
Montanuniversität Leoben
The processes of biomass **accumulation**, nutrient consumption, and growth change the hydraulic properties with time, what are the consequences for underground hydrogen storage and subsurface gas conversion sites?
Observation of residual base permeability - by structure & permeable biomass

\[K - K_C = \left(\Phi - \Phi_C \right) \tau \]

\[K_0 - K_C \]

Region of Intr.
- 33 D
- 10 D
- 1 D
- 0.5 D
- solid
- 0.3+0.6 D
- threshold

Filtration Event 1 2

Total Domain
- exp
- 33 D
- 10 D
- 1 D
- 0.5 D
- solid
- 0.3+0.6 D
- threshold
Methods and Materials

Fig. Microfluidic setup

Fig. M. formicicum serum bottle

Fig. Micromodel

Methods and Materials

single-phase nutrient flooding

flow direction

two-phase gas flooding

Time development

H₂/CO₂ gas phase

aqueous phase with biomass

bloom accumulation
Experiment: M.formicicum_2022

Response summary

Single-phase flow (60h record)

Two-phase flow (14h record)

Exp.1_M.formicicum_2022
Substrate: $V_{\text{CO}_2}=2.5\%$; $V_{\text{H}_2}=10\%$

Δp

$P_{\text{abs}}\text{[mbar]}$

$P_{\text{diff}}\text{[mbar]}$

Saturation [%]

Sat_{gas}

Sat_{bio}

0 24 48 72 96 120 144 168 192 216
0
10
20
30
40
50
60
70
80
90
100

Two-phase flow

Single-phase flow

$0 24 48 72 96 120 144 168 192 216$
0
10
20
30
40
50
60
70
80
90
100
Biomass and permeability evolution

Single-phase flow

![Diagram showing experimental data for exp. permeability, kinetic permeability, and porosity over time and relative time. The graph includes two experiments: Exp.1 (2021) @ q=0.2 mL/h and Exp.2 (2022) @ q=0.05 mL/h, with non-linear extrapolation for permeability evolution. Filtration events and a missing pressure record are also indicated.]
Experimental data and simulation results

Single-phase flow

Offset corrected-discrepancy between experiment and simulation

Fig. Segmented view of Experiment 2 (60h record & 4h capture)
Way forward

- REV dependencies
- Reasons for offset between numerical and experimental results → improvement of sim. methods
- Evaluation of two-phase experiments →
 - Effective gas permeability, \(f(t) \)
 - Growth characteristics
- Evaluation of reactive system →
 - Gas chromatography
 - Controlling parameters (Pe, Da)
- Impact of velocity and shear rates
- Multiscale experiments – rock samples →
 - Link to associated research
- Iteration towards injectivity, conversion, and storage shortcomings
Questions?

- Patrick Jasek
- Daniel Grogger
- Pit Arnold
- Boris Jammernegg
- Holger Ott
- Markus Pichler
- Stephan Bauer
- Bergit Brattekås
- Martin Fernø
- Hannes Konegger
- Andreas Loibner
- Frieder Enzmann
- Saeid Sadeghnejad
- Michael Kersten
Backup

- Growth rate

- MER
Phase 1.

Static growth rate and methane evolution rate determination

- Microbes maturity before injection (optical density)
 \[4H_2(g) + CO_2(g) \rightarrow CH_4(g) + 2H_2O(l) \rightarrow \Delta H_R^0 = -253 \text{ kJ/mol}_{CH_4}\]

Micromodel saturation with bacterial suspension

- Multi-rate \(k \) [exp]
 - HM in GeoDict [sim]
 - Permeability evolution [sim]

- Time laps-Imaging
 - porosity reduction [exp | sim]
 - biomass increase [exp | sim]
Phase 2.

Micromodel pressurization
Substrate in pressure equilibrium

- **Drainage** by liquid phase suction
 - Vindum-Pump at constant pressure operation
 - Saturation determination after Bt (Swir)
- **Imbibition**
 - Residual gas saturation as f(Nc)
 - Displacement/dissolution of substrate
 - Gas trapping by snap-off (diffusive dissolution as f(Nc,p))

Fig. Multi-K permeability determination

\[\text{pressure [mbar]} \]
\[\text{time [hh:mm]} \]
\[103 \text{ mbar @ 1ml/h} \]
\[51 \text{ mbar @ 0,5 ml/h} \]
\[20 \text{ mbar @ 0,2 ml/h} \]
\[5 \text{ mbar @ 0,02 ml/h} \]

\[y = 38.746.100.786.432.90x - 89.38 \]
\[R^2 = 1.00 \]

\[k = 2.61 \text{ D} \]
Experimental pressure records

Delta_p [mbar] vs. time [h]

Single phase flow
Two-phase flow
Multi-rate k

Absolute_p [mbar] vs. time [h]

Single phase flow
Two-phase flow

Pc @ Bt
Time development of hydraulic properties

Single-phase flow

Fig. Segmented view of Experiment 2 (60h record α' 4h capture)
Biomass and nutrient gas interaction

permeability [D]
Biomass [%]
pdiff [mbar]
nno filtration events
exponential growth phase
permeability plateau
Fig. Segmented view of Experiment 1 (48h record)
Materials and samples

- wide range pressure applications -

\[p = 1-30 \text{bar} \]

\[\Delta p = 3 \text{bar} \]

Q: 0.01-10 mL/h

Microbes abundance Lehen-field

Synthetic brine with M.formicium