Matrix-fracture flow transfer in fractured porous media: experiments and simulations

Jiafan Guo

Northeastern University
May 31, 2022

OUTLINE

1. Introduction
2. Experiments of matrix-fracture transfer
3. Generalized flow transfer model
4. Effect of influencing factors
5. Concluding remarks

1. Introduction

Matrix and fracture structure in fractured porous media

Matrix-fracture flow transfer
> The matrix-fracture flow transfer is one of the most important characteristics of flow in fractured porous media
> When the fluid pressure on matrix is different from that on the fracture, the fluid will transfer from matrix to fracture, or vice versa
> The phenomenon is usually described using a transfer function

1. Introduction

Transfer function in dual-porosity model

Warren and Root model (1963)

Transfer function:

$$
q_{m f}=\sigma \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\overline{p_{f}}\right)
$$

Where: $p_{m}=$ average matrix pressure;
$\bar{p}_{f}=$ average fracture pressure;
$\sigma=$ shape factor $\left(1 / L^{2}\right)$.

References	σL^{2}
Warren-Root (1963)	60
Kazemi et al. (1976)	12
Coats (1989)	49.58
Zimmerman et al. (1993)	29.61
Lim and Aziz (1995)	29.61
Sarda et al.(2001)	48
Hassanzadeh and Pooladi-	
Darvish (2006)	25.56
Hora and Wattenbarger (2009)	25.67
Hessanzadeh et al. (2009)	25.67
Peyman et al. (2020)	15.6
Note: L=characteristic length of the matrix	

- It is ambiguous for engineers to apply these findings in practice
- It's need to propose a generalized Matrix-fracture transfer function with consistent parameters ${ }_{4}$

1. Introduction

* Content of the study

Variable flow transfer direction in fractured porous media with complex geometry
> Study of matrix-fracture flow transfer by experiment and simulation
> Matrix-fracture flow transfer model
$>$ Investigate the influence of the fracture occurrence and fracture-matrix permeability ratio on matrix-fracture flow transfer

2. Experiments of matrix-fracture transfer

Test equipment

(c) Distribution of pressure sensors $\left(p_{m i} ; p_{f i}\right)$ and flowmeter $\left(Q_{m i} ; Q_{f i}\right)$
(b) Piezometric holes and FPM model

(a) Fracture model

Inlet/outlet of fracture
(d) Inlet/outlet of FPM model

(e) FPM model after sealed

Schematic diagram for matrix-fracture flow transfer in FPM
$>$ FPM model consists of 9 cubic matrix blocks and 4 mutually orthogonal fractures
$>$ Parameters: $e=3 \mathrm{~mm} ; e=5 \mathrm{~mm} ; e=7 \mathrm{~mm}\left(V_{\mathrm{m}}=100 \times 100 \times 100 \mathrm{~mm}^{3} ; k_{\mathrm{m}}=1.47 \times 10^{-4} \mathrm{~m} / \mathrm{s}\right)$

2. Experiments of matrix-fracture transfer

Experimental results and discussion

Pressure distribution of matrix and fracture

Pressure distribution of FPM

Two-way matrix-fracture flow transfer

- More than 90% of the pressure drop is concentrated in the first half of the flow distance
- Matrix-fracture flow transfer mainly occurs in the first half of the flow distance
$>$ Distribution of outlet flow rate

The matrix pressure gradient and flow rate

The matrix-fracture pressure difference and transfer

The matrix-fracture flow transfer rate accounts for $43 \% \sim 63 \%$ of the matrix inlet flow rate

- The normalized matrix-fracture flow transfer rate increases with fracture aperture, matrix-fracture pressure difference

2. Experiments of matrix-fracture transfer

* Matrix-fracture transfer rate
> Transfer function with shape factor

Fracture aperture $e=3 \mathrm{~mm}$

Transfer function: $\quad q_{m f}=\sigma \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\overline{p_{f}}\right)$

- The shape factor increases with increasing fracture aperture (2.58~3.70).
- The prediction of the Kazemi model is better than that of Warren-Root model.
- The predictions gradually becomes worse as $\bar{p}_{m}-\bar{p}_{f}$ increases

3. Generalized flow transfer model

* A generalized matrix-fracture flow transfer model
> Ideal matrix-fracture flow transfer

Schematic of ideal matrix-fracture flow transfer
Assumptions:

- Transfer flow occurs at the matrix/fracture interface
- Flow transfer is at steady state
- The matrix-fracture transfer flow is governed by Darcy's law
- The flow in the entire block are assumed to be one-way

3. Generalized flow transfer model

* A generalized matrix-fracture flow transfer model

> Matrix-fracture flow transfer with regularly distributed fractures

Fractured porous media

matrix-fracture flow transfer with heterogeneous fluid pressure

Ideal flow transfer: $\quad q_{m f}=\frac{A_{f}}{V_{m} L_{f}} \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\overline{p_{f}}\right)$
heterogeneous fluid pressure fracture pressure correction coefficient α

$$
q_{m f}=\frac{A_{f}}{V_{m} L_{f}} \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\alpha \overline{p_{f}}\right)
$$

Where: $\overline{p_{m}}-\alpha \overline{p_{f}}=$ effective pressure difference between matrix and fracture;

3. Generalized flow transfer model

* A generalized matrix-fracture flow transfer model

> Matrix-fracture flow transfer with irregularly distributed fractures

Schematic of matrix-fracture flow transfer with irregularly distributed fractures
Ideal transfer flow: $q_{m f}=\frac{A_{f}}{V_{m} L_{f}} \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\overline{p_{f}}\right) \xrightarrow{\text { heterogeneous pressure }} q_{m f}=\frac{A_{f}}{V_{m} L_{f}} \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\alpha \overline{p_{f}}\right)$

$$
\text { Natural rock } \sqrt{\| \frac{A_{f}}{V_{m} L_{f}} \rightarrow \frac{1}{l_{c}^{2}}}
$$

Generalized flow transfer model: $\quad q_{m f}=\frac{1}{l_{\mathrm{c}}^{2}} \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\alpha \overline{p_{f}}\right)$
Where: $I_{\mathrm{c}}=$ Characteristic trace length of fractures;
$\overline{p_{m}}-\alpha \overline{p_{f}}=$ Effective pressure difference between matrix and fracture;

3. Generalized flow transfer model

Verification of generalized matrix-fracture flow transfer model

> Generalized matrix-fracture flow transfer model

$$
q_{m f}=\frac{1}{l_{\mathrm{c}}^{2}} \frac{k_{m}}{\mu}\left(\overline{p_{m}}-\alpha \overline{p_{f}}\right)
$$

- The flow transfer rate has a linear relationship with the effective matrix-fracture pressure difference, but it cannot reflect the influence of the fracture aperture

4. Effect of influencing factors

* Simulation method

> The parameter values of fracture network (Hitchmough et al., 2007)

parameter	Trace length/m	Dip angle/ $/$ ©	Dip direction/ ${ }^{\circ}$	Density/(pieces/m³)	aperture/mm
Mean	4	$3,89,85$	$90,265,351$	0.1	0.2
Variance	0.1	$1,8,10$	$5,29,14$	-	-
Distribution	Normal	Normal	Normal	-	-

> Geometrical model and boundary conditions

Geometrical model $(10 \times 10 \times 10 \mathrm{~m})$

Boundary conditions
> Simulation cases performed in this study

NO.	Trace length/m	Density/ (pieces/m-3)	$K_{\mathrm{f}} / k_{\mathrm{m}}$
1	4	0.1	10000
2	3.5	0.1	10000
3	4.5	0.1	10000
4	4	0.05	10000
5	4	0.15	10000
6	4	0.1	5000
7	4	0.1	20000

4. Effect of influencing factors

Simulation results and discussion

> Distribution of matrix and fracture

The heterogeneous fluid pressure due to the difference of permeability between matrix and fracture:

- High pressure: area away the fracture
- Medium pressure: the matrix area near the fracture
- Low pressure: area near the fracture
- Peaks and troughs appear in the matrix pressure curve along the flow direction due to the complexity of fracture geometry
- Inconsistent directions of matrix-fracture flow transfer because of the heterogeneous fluid pressure around the matrix
Pressure distribution of matrix and fracture

4. Effect of influencing factors

* Discussion of simulation results

> Effect of influencing factors

Relations between matrix-fracture pressure difference and matrixfracture flow transfer with different fracture trace lengths

Relations between matrix-fracture pressure difference and matrixfracture flow transfer with different fracture density

Relations between matrix-fracture pressure difference and matrixfracture flow transfer with different fracture/matrix permeability ratio

- The flow transfer rate presented a nonlinear increasing trend as the matrixfracture pressure difference increased。
- The fracture aperture, trace length, and density have a positive effect on the flow transfer, and the FMPR has a negative effect on the flow transfer.

4. Effect of influencing factors

* Discussion of simulation results

$>$ Verification of the flow transfer model

Influence of fracture trace length

Influence of fracture density

Influence of fracture/matrix permeability ratio

5. Concluding remarks

- Experiments of matrix-fracture flow transfer in fractured porous media were performed under different aperture and pressure difference between matrix and fracture. The experiments show that there is a strong nonlinear relationship between the matrixfracture flow transfer term and flow rates.
- A generalized matrix-fracture flow transfer model for fractured porous media considering the influence of the stochastic fracture distribution on fluid flow was proposed. The matrix-fracture flow transfer term depends on the effective pressure difference between matrix and fracture.
- The influence of fracture trace length, density, and fracture/matrix permeability ratio on the matrix-fracture flow transfer term were investigated by simulation. The matrix-fracture flow transfer term increases with the increase of fracture trace length, density, and fracture/matrix permeability ratio, while the fracture pressure correction coefficient is opposite.

Thank you！

请各位专家批评指正

