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Motivation: Solar-driven Thermochemical Fuel Production

• Functions of porous media
- Absorbing solar irradiation,
- Facilitating mass transport,
- Providing reaction sites.

• Physical phenomenon involved
- Solar radiation absorbing,
- Fluid flow and mass transfer,
- Multi-mode heat transfer,
- Bulk and surface chemical reactions.
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Triply Periodic Minimum Surface (TPMS) Structure

- Mathematically controllable geometry. 
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Typical value of 10 ppi reticulated porous ceria with pore-former1

Pore-level scale

• The FK-S structure

- Wide tunable porosity range,
- High specific surface aera,

- ω controls cell length,           
larger ω smaller cell length

- Governing equation of FK-S structure

- c controls porosity,              
larger c  porosity
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Objectives

• To develop a multiphysical model, to quantify:

- Solar radiation absorption
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Objectives

• To develop a fully coupled multiphysical model, to quantify:

- Solar radiation absorption

- Fluid flow 

- Heat transfer (conduction, convection, radiation)
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Objectives

• To develop a fully coupled multiphysical model, to quantify:

- Solar radiation absorption

- Fluid flow 

- Heat transfer

- Species transport (Bulk diffusion and 

surface exchange kinetics) 

 To improve performance of thermochemical fuel production by optimize the porous structure.
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- Energy conservation 

- Solid phase

- Fluid phase

- Species conservation

Model development: Fluid flow, optics, mass and heat transfer
• Conservation equations

- Mass conservation 

- Momentum conservation

Weakly compressible flow

Radiatively participating heat source

Reduction reaction  

Governed by oxygen species mass balance
Diffusion model: mixture-averaged

Oxygen evolution from reduction reaction
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• Optics modeling

- Monte Carlo method to solve incident radiation 
absorbing distribution 

- Solid phase: opaque (no radiation propagation inside 
solid phase) and gray (all radiative properties are 
independent of wavelength)

- Fluid phase: transparent (no ray extinction in fluid phase)

Hemispherical 
incident

Absorbing wall 
Absorptivity = 0.8,
Reflectivity = 0.2

Insulation wall

Bouncing wall

• Reradiation modeling

- Surface-to-surface radiation method

- Quantified between the solid phase surfaces 

- Re-radiation flux only depends on thermal radiation

- Emission direction of surfaces are pointed into solid phase Trerad = 300 ℃
emissivity = 0.8

Trerad = Tsolid, surface
emissivity = 0.8

Model development: Fluid flow, optics, mass and heat transfer
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Model development: Mass transfer

1. Ackermann, S., Scheffe, J. R. & Steinfeld, A. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles. J. Phys. Chem. C 118, 5216–5225 (2014).
2. Ji, H. Il, Davenport, T. C., Gopal, C. B. & Haile, S. M. Extreme high temperature redox kinetics in ceria: Exploration of the transition from gas-phase to material-kinetic limitations. Phys. Chem. Chem. Phys. 18, 

21554–21561 (2016). 6
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• Solid-fluid interface:

• Thermochemical equilibrium

- Oxygen surface exchange

- Energy consumption in reduction reaction

Equilibrium 
condition

Model development: Mass transfer
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• Solid-fluid interface:

• Thermochemical equilibrium

- Mass transport: Oxygen species mass balance

- Bulk diffusion: Ficker’s law

- Oxygen surface exchange

- Energy consumption in reduction reaction
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Model development: Mass transfer

1. Ackermann, S., Scheffe, J. R. & Steinfeld, A. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles. J. Phys. Chem. C 118, 5216–5225 (2014).
2. Ji, H. Il, Davenport, T. C., Gopal, C. B. & Haile, S. M. Extreme high temperature redox kinetics in ceria: Exploration of the transition from gas-phase to material-kinetic limitations. Phys. Chem. Chem. Phys. 18, 

21554–21561 (2016). 6

Reduction reaction

Oxygen vacancy diffusion2

Oxygen evolution1



• Solid-fluid interface:

• Thermochemical equilibrium

- Mass transport: Oxygen species mass balance

- Bulk diffusion: Ficker’s law

- Oxygen surface exchange

- Energy consumption in reduction reaction

• Gas phase

• Solid phase

Updated

Updated

Reduction reaction

Model development: Mass transfer
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21554–21561 (2016).

Oxygen vacancy diffusion2

Oxygen evolution1

6



Results
• Initial condition and boundary condition

• Temperature and oxygen non-stoichiometry
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Results
• Initial condition and boundary condition

• Temperature and oxygen non-stoichiometry
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• Energy balance
260 s



Results
• Impact of surface exchange coefficient ksurf

- Surface roughness can influence apparent ksurf.

- The increasing of ksurf boosts reaction rate.

- Low ksurf is a limiting factor. 
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The increasing of ksurf leads reduction extend accentuation. 

The gradient is caused by uneven temperature distribution. 

Solid Temperature Oxygen Partial Pressure

Higher Ts Lower XO2+ = Higher equilibrium δ



100Dbulk 0.01Dbulk

Results
• Impact bulk diffusion coefficient Dbulk

- Large solid phase fraction can increase apparent Dbulk.

- The increasing of Dbulk boosts reaction rate.

- Low Dbulk is a limiting factor. 
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ksurf, Dbulk (Ref.)

100Dbulk

00.1Dbulk

ksurf, Dbulk

For low Dbulk, surface has 
higher reduction extend.

Solid temperature

Oxygen partial pressure

Front: Higher Ts and XO2
OV and O2 combination

Fast OV 
transport

OV generation 
Rear: Lower Ts and XO2



Outlook
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• Direct pore-level multiphysical model

- Input: Porous structure

- Output: High fidelity physics field of solar-to-fuel performance 

- Application: gradient structure design 

• For example： To minimize the temperature gradient
Location of the highest
temperature spot- Management of incident radiation absorption

- Smaller porosity at front surface to let more energy heat up rear part. 

- Increasing convective heat transfer

- Tuning structure to achieve higher Nusselt number. 



• A comprehensive multi-physics model based on actual geometry of porous ceria has been

developed including heat and mass transfer, species transport, solar absorption, as well as

bulk vs. surface kinetics.

Summary
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• The impacts of surface exchange coefficient and bulk diffusion coefficient on reduction

reaction are compared.
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