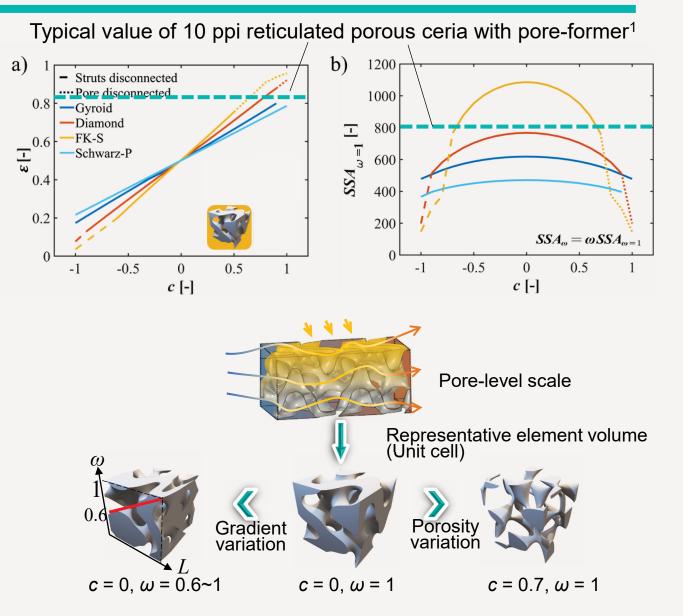

Direct pore-level multiphysical model for solar thermochemical fuel production reactor based on structured porous media

Da Xu, Meng Lin* xud2020@mail.sustech.edu.cn

Solar Energy Conversion and Utilization Laboratory (SECUL) Department of Mechanical and Energy Engineering SUSTech

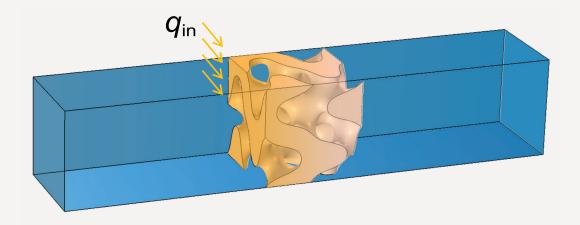
InterPore 2022 | 05.31.2022

Motivation: Solar-driven Thermochemical Fuel Production

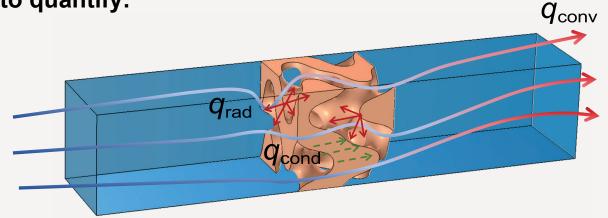


- Functions of porous media
 - Absorbing solar irradiation,
 - Facilitating mass transport,
 - Providing reaction sites.

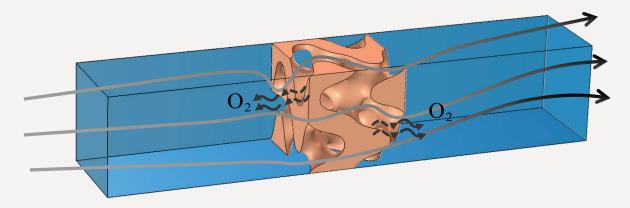
- Physical phenomenon involved
 - Solar radiation absorbing,
- Fluid flow and mass transfer,
- Multi-mode heat transfer,
- Bulk and surface chemical reactions.


Triply Periodic Minimum Surface (TPMS) Structure

- The FK-S structure
 - Wide tunable porosity range,
 - High specific surface aera,
 - Mathematically controllable geometry.
 - Governing equation of FK-S structure $\cos(2\omega x)\sin(\omega y)\cos(\omega z) +$ $\cos(2\omega y)\sin(\omega z)\cos(\omega x) +$ $\cos(2\omega z)\sin(\omega x)\cos(\omega y) = c$
 - ω controls cell length, larger $\omega \rightarrow$ smaller cell length
 - c controls porosity, larger $c \rightarrow$ porosity


Objectives

- To develop a multiphysical model, to quantify:
 - Solar radiation absorption


Objectives

- To develop a fully coupled multiphysical model, to quantify:
 - Solar radiation absorption
 - Fluid flow
 - Heat transfer (conduction, convection, radiation)

Objectives

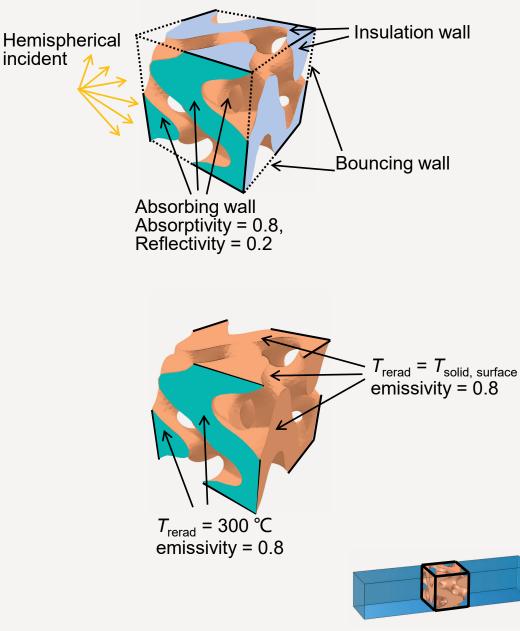
- To develop a fully coupled multiphysical model, to quantify:
 - Solar radiation absorption
 - Fluid flow
 - Heat transfer
 - Species transport (Bulk diffusion and surface exchange kinetics)

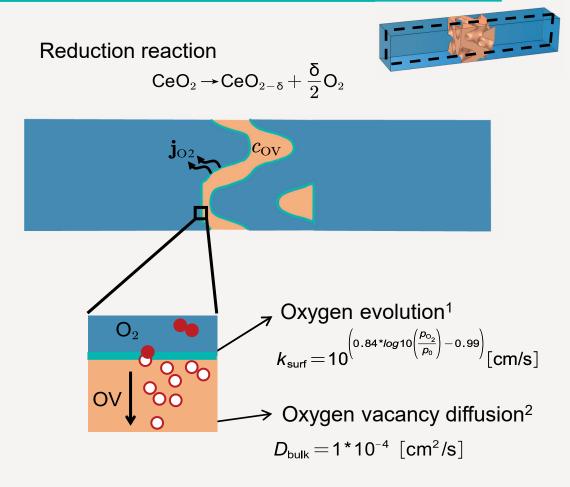
 \rightarrow To improve performance of thermochemical fuel production by optimize the porous structure.

Model development: Fluid flow, optics, mass and heat transfer

- Conservation equations
 - Mass conservation

- $\frac{\partial \rho_{\rm f}}{\partial t} + \nabla \cdot (\rho_{\rm f} \mathbf{u}) = R_{\rm O_2} \longrightarrow \text{Oxygen evolution from reduction reaction}$
- Momentum conservation $\rho_{f} \frac{\partial u_{f}}{\partial t} + \rho_{f} (u_{f} \cdot \nabla) u_{f} = -\nabla \rho + \mu_{f} \nabla u_{f}$

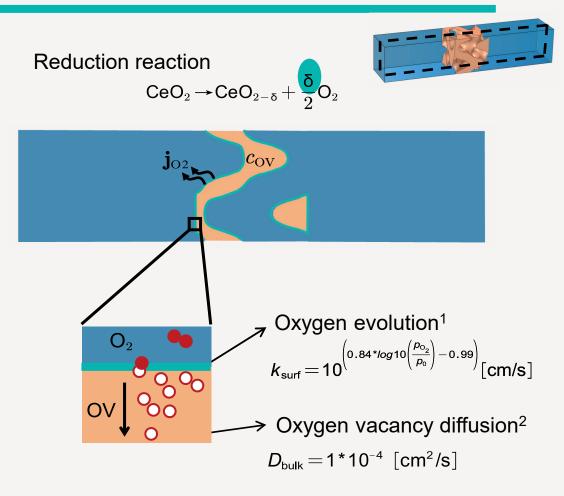

- Energy conservation - Solid phase $(\rho c_p)_s \frac{\partial T_s}{\partial t} = \nabla \cdot (k_s \nabla T_s) + \nabla q_{rerad}'' + q_{red}''' \rightarrow \text{Reduction reaction}$
 - Fluid phase $(\rho c_p)_f \frac{\partial T_f}{\partial t} + \rho_f c_{p,f} \mathbf{u}_f \cdot \nabla T_f = \nabla \cdot (k_f \nabla T_f)$


- Species conservation $\frac{\partial \rho \omega_{O_2}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \omega_{O_2}) + \nabla \cdot \mathbf{j}_{O_2} = R_{O_2}$

Governed by oxygen species mass balance Diffusion model: mixture-averaged

Model development: Fluid flow, optics, mass and heat transfer

- Optics modeling
 - Monte Carlo method to solve incident radiation absorbing distribution
 - Solid phase: opaque (no radiation propagation inside solid phase) and gray (all radiative properties are independent of wavelength)
 - Fluid phase: transparent (no ray extinction in fluid phase)
- Reradiation modeling
 - Surface-to-surface radiation method
- Quantified between the solid phase surfaces
- Re-radiation flux only depends on thermal radiation
- Emission direction of surfaces are pointed into solid phase


- 1. Ackermann, S., Scheffe, J. R. & Steinfeld, A. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles. J. Phys. Chem. C 118, 5216–5225 (2014).
- 2. Ji, H. II, Davenport, T. C., Gopal, C. B. & Haile, S. M. Extreme high temperature redox kinetics in ceria: Exploration of the transition from gas-phase to material-kinetic limitations. *Phys. Chem. Chem. Phys.* 18, 21554–21561 (2016).

Thermochemical equilibrium

$$\delta = f\left(T_{\rm s}, \frac{p_{\rm O_2}}{p_0}\right)$$

Equilibrium condition

- Solid-fluid interface:
 - Oxygen surface exchange $\mathbf{j}_{OV} = k_{surf} (c_{OV, surf} - c_{OV, eq})$
- Energy consumption in reduction reaction $Q_{red}^{"} = \dot{n}_{O2}^{"} \Delta H_{O2,surf}$

- 1. Ackermann, S., Scheffe, J. R. & Steinfeld, A. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles. J. Phys. Chem. C 118, 5216–5225 (2014).
- Ji, H. II, Davenport, T. C., Gopal, C. B. & Haile, S. M. Extreme high temperature redox kinetics in ceria: Exploration of the transition from gas-phase to material-kinetic limitations. *Phys. Chem. Chem. Phys.* 18, 21554–21561 (2016).

Thermochemical equilibrium

$$\delta = f\left(T_{s}, \frac{p_{O_{2}}}{p_{0}}\right)$$

• Solid-fluid interface:

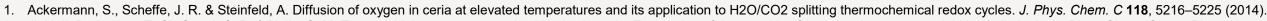
- Oxygen surface exchange $\mathbf{j}_{OV} = k_{surf} (c_{OV, surf} - c_{OV, eq})$
- Energy consumption in reduction reaction $Q_{red}'' = \dot{n}_{O2}'' \Delta H_{O2,surf}$

Specie source

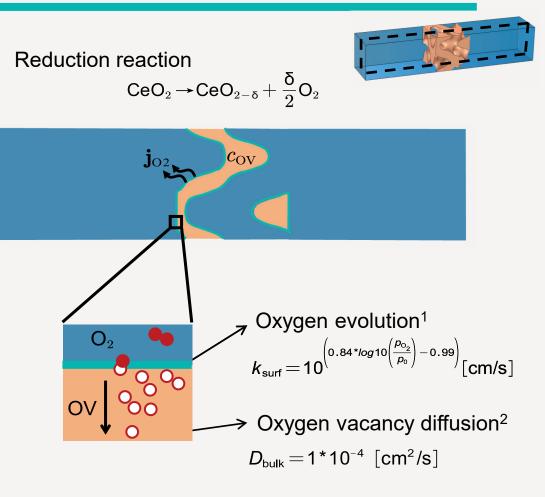
Gas phase

- Mass transport: Oxygen species mass balance $\frac{\partial \rho \,\omega_{O_2}}{\partial t} + \nabla \cdot (\rho \,\mathbf{u} \,\omega_{O_2}) + \nabla \cdot \mathbf{j}_{O_2} = R_{O_2}$

source & boundary


Heat

mass flux


Solid phase

- Bulk diffusion: Ficker's law

$$\frac{\partial c_{\rm O}}{\partial t} = D_{\rm b} \nabla^2 c_{\rm O}$$

2. Ji, H. II, Davenport, T. C., Gopal, C. B. & Haile, S. M. Extreme high temperature redox kinetics in ceria: Exploration of the transition from gas-phase to material-kinetic limitations. *Phys. Chem. Chem. Phys.* 18, 21554–21561 (2016).

→ Thermochemical equilibrium

$$\delta = \mathsf{f}\left(T_{\mathsf{s}}, \frac{p_{\mathsf{O}_2}}{p_0}\right)$$

• Solid-fluid interface:

- Oxygen surface exchange $\mathbf{j}_{OV} = k_{surf} (c_{OV, surf} - c_{OV, eq})$
- Energy consumption in reduction reaction $Q_{red}'' = \dot{n}_{O2}'' \Delta H_{O2,surf}$

Updated p_{O_2}

 p_0

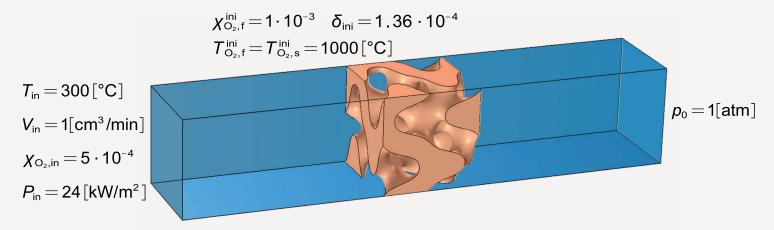
Gas phase

Mass transport: Oxygen species mass balance $\frac{\partial \rho \,\omega_{O_2}}{\partial t} + \nabla \cdot (\rho \,\mathbf{u} \,\omega_{O_2}) + \nabla \cdot \mathbf{j}_{O_2} = R_{O_2}$

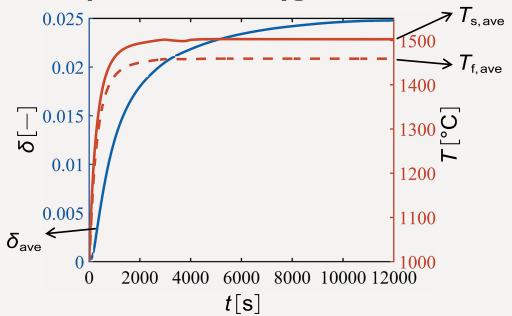
Updated T_s

• Solid phase

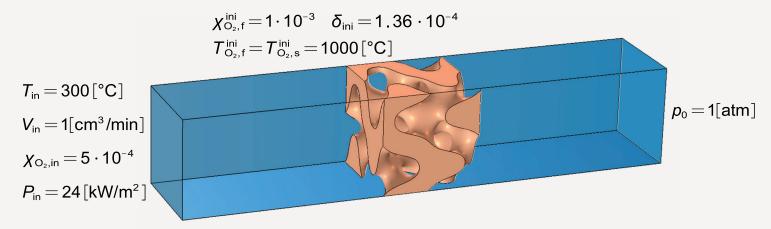
- Bulk diffusion: Ficker's law

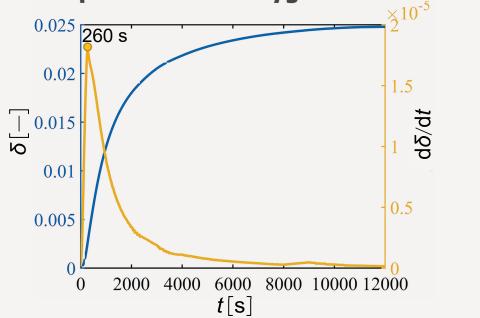

$$\frac{\partial c_{\rm O}}{\partial t} = D_{\rm b} \nabla^2 c_{\rm O}$$

1. Ackermann, S., Scheffe, J. R. & Steinfeld, A. Diffusion of oxygen in ceria at elevated temperatures and its application to H2O/CO2 splitting thermochemical redox cycles. J. Phys. Chem. C 118, 5216–5225 (2014).

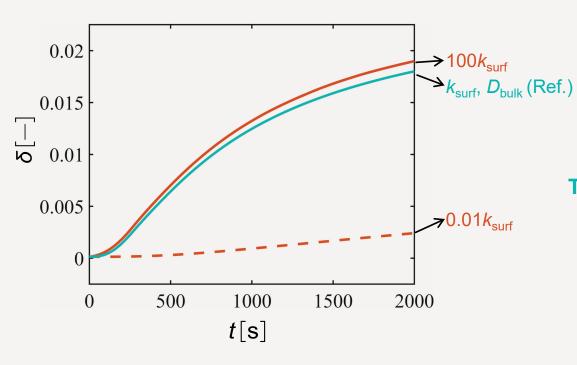

2. Ji, H. II, Davenport, T. C., Gopal, C. B. & Haile, S. M. Extreme high temperature redox kinetics in ceria: Exploration of the transition from gas-phase to material-kinetic limitations. *Phys. Chem. Chem. Phys.* 18, 21554–21561 (2016).

Reduction reaction $CeO_2 \rightarrow CeO_{2-\delta} + \frac{o}{2}O_2$ $c_{\rm OV}$ Oxygen evolution¹ $k_{surf} = 10^{\left(0.84 \cdot \log 10 \left(\frac{p_{o_2}}{p_0}\right) - 0.99\right)}$ 8% Oxygen vacancy diffusion² $D_{\text{bulk}} = 1 \times 10^{-4} \text{ [cm^2/s]}$


Initial condition and boundary condition

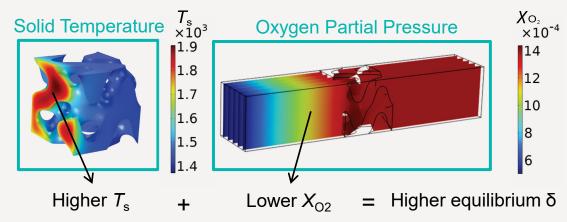

Temperature and oxygen non-stoichiometry

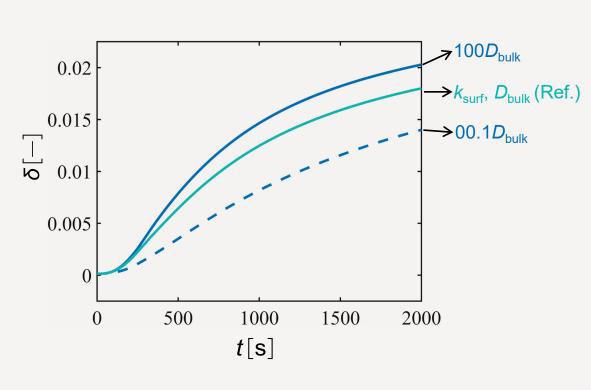
• Initial condition and boundary condition

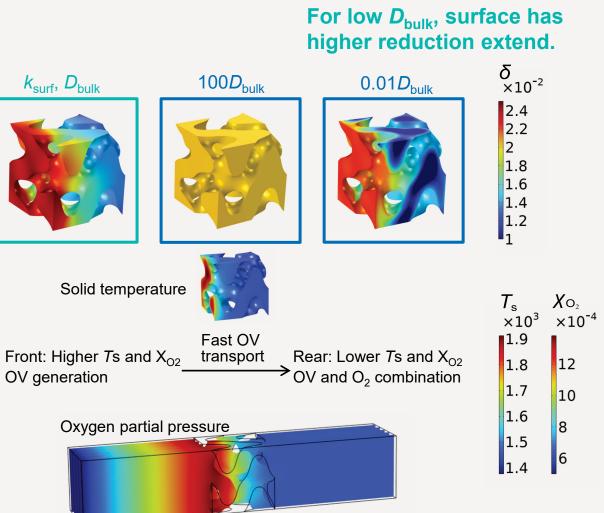


• Temperature and oxygen non-stoichiometry

Energy balance • 0.6 r q_{opt} 0.5 $q_{\text{heating, fluid}}$ $q_{\mathsf{heating},\mathsf{solid}}$ 0.4 ∑_{0.3} $q_{\rm red}$ 0.2 **q**_{rerad} 0.1 0 2000 4000 6000 8000 10000 12000 0 *t*[s]

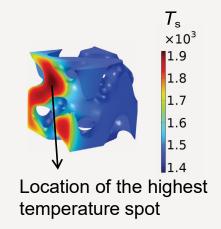

- Impact of surface exchange coefficient k_{surf}
 - Surface roughness can influence apparent k_{surf} .
 - The increasing of k_{surf} boosts reaction rate.
 - Low k_{surf} is a limiting factor.


The increasing of k_{surf} leads reduction extend accentuation.

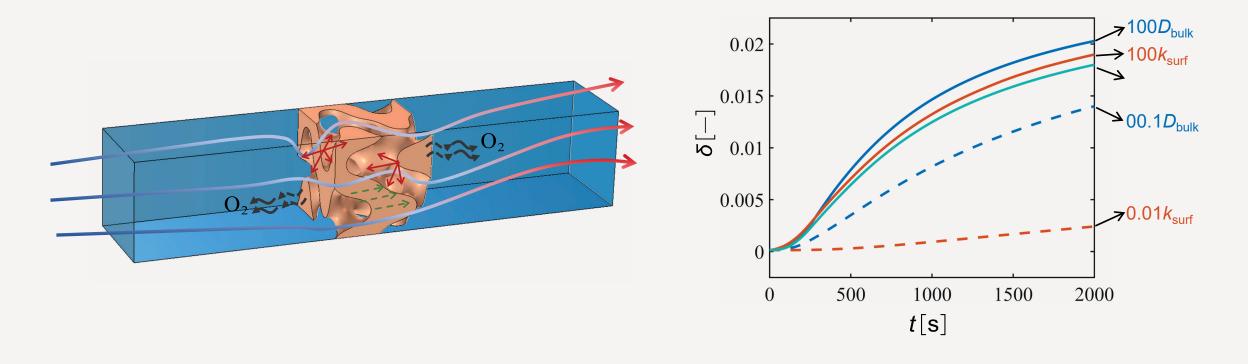


The gradient is caused by uneven temperature distribution.

- Impact bulk diffusion coefficient D_{bulk}
 - Large solid phase fraction can increase apparent D_{bulk} .
 - The increasing of D_{bulk} boosts reaction rate.
 - Low D_{bulk} is a limiting factor.



Outlook


- Direct pore-level multiphysical model
 - Input: Porous structure
 - Output: High fidelity physics field of solar-to-fuel performance
 - Application: gradient structure design

- For example: To minimize the temperature gradient
 - Management of incident radiation absorption
 - Smaller porosity at front surface to let more energy heat up rear part.
 - Increasing convective heat transfer
 - Tuning structure to achieve higher Nusselt number.

Summary

- A comprehensive multi-physics model based on actual geometry of porous ceria has been developed including heat and mass transfer, species transport, solar absorption, as well as bulk vs. surface kinetics.
- The impacts of surface exchange coefficient and bulk diffusion coefficient on reduction reaction are compared.

