

A MACROSCOPIC TWO-LENGTH-SCALE MODEL FOR NATURAL CONVECTION IN POROUS MEDIA DRIVEN BY A SPECIES-CONCENTRATION GRADIENT

Stefan Gasow, Andrey V. Kuznetsov, Marc Avila and Yan Jin

Motivation

- Reduction of anthropogenic CO₂ emissions by CO₂ sequestration in deep saline aquifers
 - Dissolution driven natural convection with high Rayleigh-Darcy numbers ($Ra \sim 10^4$)

Objective

- Better understanding of the physics of "macroscopic turbulent" natural convection in porous media.
- Can "turbulent" natural convection in porous media be precisely modeled by the state of the art Darcy-Oberbeck-Boussinesq (DOB) equations?

Proposal of a new macroscopic model: **Two Length Scale Diffusion** model (TLSD)

General procedure

Governing microscopic equations (DNS)

$$\frac{\partial \tilde{u}_{i}}{\partial \tilde{x}_{i}} = 0$$

$$\frac{\partial \tilde{u}_{i}}{\partial \tilde{t}} + \frac{\partial (\tilde{u}_{i}\tilde{u}_{j})}{\partial \tilde{x}_{j}} = -\frac{\partial \tilde{p}}{\partial \tilde{x}_{i}} + \frac{\operatorname{Sc}}{\operatorname{Ra}_{f}\operatorname{Da}} \frac{\partial^{2} \tilde{u}_{i}}{\partial \tilde{x}_{j}^{2}} - \frac{\operatorname{Sc}}{\operatorname{Ra}_{f}\operatorname{Da}^{2}} z_{i}\tilde{c}$$

$$\frac{\partial \tilde{c}}{\partial \tilde{t}} + \frac{\partial (\tilde{u}_{i}\tilde{c})}{\partial \tilde{x}_{i}} = \frac{1}{\operatorname{Ra}_{f}\operatorname{Da}} \frac{\partial^{2} \tilde{c}}{\partial \tilde{x}_{i}^{2}}$$

~: Dimensionless variable

Sc =
$$v/D_f$$
 Ra $_f = H^3 \beta \Delta c g/v D_f$ $\tilde{t} = t u_m/H$
Da = K/H^2 $\tilde{u} = u/u_m$ $\tilde{x} = x/H$
 K : Permeability $u_m = \beta \Delta c g K/v$ $\tilde{c} = c - c_0/\Delta c$

Governing macroscopic equations (DOB)

$$\frac{\partial \hat{u}_i}{\partial \hat{x}_i} = 0$$

$$\frac{\partial \hat{p}}{\partial \hat{x}_i} + \hat{c}z_i + \hat{u}_i = 0$$

$$\frac{\partial \hat{c}}{\partial \hat{t}} + \frac{\partial (\hat{u}_i \hat{c})}{\partial \hat{x}_i} = \frac{1}{\text{Ra}} \frac{\partial^2 \hat{c}}{\partial \hat{x}_i^2}$$

^: Dimensionless and volume averaged variable

$$Ra = \frac{Ra_f Da}{\gamma_m} = \frac{H\beta \Delta cgK}{D_m \nu} \qquad \hat{p} = \frac{RaDa\langle \tilde{p} \rangle^i}{\gamma_m Sc} \qquad \hat{c} = \frac{\langle c \rangle^i - c_0}{c_1 - c_0}$$

$$\hat{p} = \frac{\text{RaDa}\langle \tilde{p} \rangle^{l}}{\gamma_{m} \text{Sc}}$$

$$\hat{c} = \frac{\langle c \rangle^i - c_0}{c_1 - c_0}$$

$$\gamma_m = \frac{D_m}{D_f}$$

$$\hat{u}_i = \phi \langle \tilde{u}_i \rangle^i$$
 ϕ : Porosity

$$\phi$$
: Porosity

Case study

$$s/d$$
 -> ϕ [0.33 - 0.96], K/d^2 [1 × 10⁻⁶ - 1.7] and γ_m
 H/s -> Da[7 × 10⁻⁸ - 1.7 × 10⁻⁴]
 Ra: [500-20,000]

Derivation of TLSD model

- The DNS revealed significant effects which can not be captured by the state of the art model the DOB:
 - Increase of the domain size H=> increase of the mega-plumes
 - ▶ Species boundary layer thickness /characteristic length scale \sim pore size \sqrt{K}
 - Increase of the porosity => change of the Sherwood(Ra) scaling
 - The Darcy term $\frac{\gamma_m \text{Sc}}{\text{RaDa}} \hat{u}_i$ can not account for all losses at the boundary layer

Derivation of TLSD model

Macroscopic momentum diffusion:

$$| \breve{R}_i | + v \frac{\partial^2 \breve{u}_i}{\partial \breve{x}_j^2} = | \underbrace{v}_{K} \breve{u}_i | + v_m \frac{\partial^2 \breve{u}_i}{\partial \breve{x}_j^2}$$

$$= \underbrace{v}_{K} \breve{u}_i + v_m \frac{\partial^2 \breve{u}_i}{\partial \breve{x}_j^2}$$

TLSD hypothesis: macroscopic diffusion is determined by the pore size \sqrt{K} , and the domain size $H = \infty$ combined in Da:

$$u_m = \nu \frac{a_{\nu}^*}{Da}$$

 a_{ν}^{*} : a constant assumed to be solely determined by the pore-scale geometry

Derivation of TLSD model

Governing equations of the TLSD model

$$\frac{\partial \hat{u}_i}{\partial \hat{x}_i} = 0$$

$$\frac{\partial \hat{u}_{i}}{\partial \hat{t}} + \frac{\partial (\hat{u}_{i} \hat{u}_{i} / \phi)}{\partial \hat{x}_{j}} = -\frac{\partial (\phi \langle \tilde{p} \rangle^{i})}{\partial \hat{x}_{i}} + \frac{a_{\nu}^{*} Sc}{\gamma_{m} RaDa} \frac{\partial^{2} \hat{u}_{i}}{\partial \hat{x}_{j}^{2}} - \frac{\phi Sc}{\gamma_{m} RaDa} z_{i} \hat{c} - \frac{\phi Sc}{\gamma_{m} RaDa} \hat{u}_{i}$$

$$\frac{\partial(\phi\hat{c})}{\partial\hat{t}} + \frac{\partial(\hat{u}_i\hat{c})}{\partial\hat{x}_i} = \frac{1}{\mathrm{Ra}} \frac{\partial^2\hat{c}}{\partial\hat{x}_i^2}$$

^: Dimensionless and volume averaged variable

~: Dimensionless variable

 $\langle \rangle^i$: Intrinsic volume averaged variable

Results

Sh correlations in dependence on Ra:

Results

Vertical profiles of $\langle \hat{c} \rangle^{x_1}$ and root mean square velocity fluctuations $\langle \hat{u}_i^{rms} \rangle^{x_1}$ (Sc=250; Ra=20,000):

Conclusion

- A new macroscopic model for natural convection in porous media has been proposed the TLSD model:
 - Accounts for macroscopic diffusion
 - Macroscopic diffusion is determined by two length scales the pore size \sqrt{K} and the domain size H
 - The TLSD model predicts more accurate Sherwood numbers, mass concentration, and r.m.s. velocity than the state of the art DOB equations

Thank you for your attention!

If you are interested in more results or would like to discuss the topic, I am looking forward to meet you at my poster session.

Follow us

@ZARM_de

ZARM

zarm.uni-bremen.de/