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     As early as in 1970s radial functions have been first used as a basis for interpolation of scattered data sets [2]. Since then this method 

has been both widely studied and utilized to problems varying from pricing financial instruments to biomed flows (see, e.g. [1]). This 

was due to its meshless nature - giving up the necessity of connectivity between nodes discretizing the space, multidimensionality as 

well as ease of implementation and subsequent code changes.

     Real-life examples of radial functions may be point gravitational or electric fields. Many 

choices for RBFs are available, starting at cubic functions (1), through multiquadratics (2) to 

Gaussian bells (3):

    Giving up mesh in favor of point clouds to discretize the problem makes room for using 

irregular, locally refined sets of points easily (see Figure 1). To conveniently handle such sets 

and to account for "non-smoothness" of the interpolated function, interpolation is usually 

performed in a local manner - interpolation stencils are composed of subsets of all the nodes 

used for discretization (see Fig. 2). This way, the whole domain is covered by a set of 

interpolants - one is free to choose which of them will be used in interpolation at an arbitrary 

point.

    A radial function     maps d-dimensional space into a set of scalars. Its value depends only 

on Euclidean distance between the function's center     and its argument      :

Fig. 1. Discretization used for 

calculations shown to the left. 

"InterPore2021" text was approximated 

using 347 circles distributed with a 

genetic algorithm. Node set was 

obtained with Medusa library [5].

RBF interpolation

Motivation - how can porous flow solver benefit from being meshless?
     Tortuosity (T) and permeability (k) are the two main hydrodynamic properties of porous media. To determine their values one has to know the velocity 

field of a fluid flowing through a porous sample. Due to the problems with direct measurements as well as with obtaining analytical solutions to 

hydrodynamics equations in such complex geometries the usage of numerical methods is mandatory in this field of science. However, although a wide range of 

the latter is available - from finite differences, through finite volume to for example Lattice Boltzmann method, the process of obtaining wanted solutions is still 

a_challenging task. Here we present an application of a fusion of well-established Lattice Boltzmann Method with meshless radial basis functions (RBF) 

interpolation scheme presented in [4] to calculating tortuosity and permeability of random porous geometries. The algorithm is operating on domains 

discretized with irregular, non-connected sets of nodes, in contrast to [4] where discretization were rectangular or O-type grids.

Meshless, semi-Lagrangian LBM
     The idea of meshless LBM presented in [4] is to interpolate post-collision 

distribution function values from each of the irregularily placed nodes to 

Lagrangian departure points from which it is transported to appropriate 

Eulerian nodes (usually stencil center nodes) in streaming steps (see Fig. 2).

    Introducing RBF interpolation to classic Lattice Boltzmann Method on such a 

basis allows for overcoming the latter's limitations inherited from Lattice Gas 

Automata - the need for structured, square-grid discretization in physical space 

and coupling of physical space and velocity discretization. 

     What follows is among others the approach ability to oprate on boundary-

fitted discretizations with variable nodes density and to change the set of 

discretized velocities independently of physical space discretization.

      Below are shown the results of tortuosity and permeability calculations 

obtained on irregular node sets, compared to one of earlier works in this matter 

[3].

Fig 2. Main ingredients of the discussed 

interpolation procedure

Fig 3. Plots of tortuosity (left) and dimensionless permeability (right) obtained with the 

discussed algorithm (white markers) and presented in [3] (blue markers) versus porosity.
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