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Phase-field / variational modeling for fracture
Key idea (Bourdin/Francfort/Marigo; 1998/2000):
• Numerical approach is based on Ambrosio-Tortorelli elliptic functionals1;
• Discontinuities in the displacement field across the lower-dimensional crack surface C

are approximated by an auxiliary (smoothed indicator) function ϕ:

Γε(ϕ) =
1
2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2 → Hd−1(C) for ε→ 0,

in the sense of the Γ-limit.

Figure: Left: Crack in a sheet of paper caused by cutting with scissors and.
Right: diffusive fixed-topology finite element phase-field modeling. The
transition zone (green) has width ε > h > 0.

1Ambrosio/Tortorelli; 1990, 1992
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Modeling phase-field fracture in a nutshell

• Griffith’s model for brittle fracture: Energy functional E is minimized with respect to
kinematically admissible displacements u and any crack path ϕ satisfying a crack
growth condition

∂t ϕ ≤ 0 (variational inequality! Rice’s condition)

• Crack C with length l advances if energy release rate is critical:( ∂P
∂l

(t, l(t)) + Gc

)
· ∂tl(t) = 0,

where P is the potential energy and Gc the fracture toughness.
• Variational fracture in pure elasticity: Francfort and Marigo et al. (since 1998) 2

• Thermodynamically consistent phase-field framework: Amor et al. 2009 and Miehe et
al. 2010, CMAME and IJNME

• Pressurized and fluid-filled fractures in poroelasticity: Mikelić et al. (since 2013, ICES
report 13-15; published in 2019 in GEM)3

2Further important contributations: Bourdin, Chambolle, Dal Maso et al., Burke et al.,
Larsen et al., Allaire et al.

3Also other contributions from Bourdin et al. (2012), Almi et al. (2014), Miehe et al. (2015),
Heider et al. (2015)
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The resulting Euler-Lagrange system
Formulation (PFF for elasticity)
Define V := H1

0(B), Win := {w ∈ H1(B)|w ≤ ϕold ≤ 1 a.e. on B}, and W := H1(B). For the
loading steps n = 1, 2, 3, . . .: Find vector-valued displacements and a scalar-valued phase-field variable
(un, ϕn) := (u, ϕ) ∈ {uD + V} ×W such that((

(1− κ)ϕ2 + κ
)

σ(u), e(w)
)
= 0 ∀w ∈ V, (1)

and
(1− κ)(ϕ σ(u) : e(u), ψ−ϕ)

+ Gc

(
− 1

ε
(1− ϕ, ψ−ϕ) + ε(∇ϕ,∇(ψ− ϕ))

)
≥ 0 ψ ∈ Win ∩ L∞(B)

(2)

Therein, ε, κ > 0 and κ = o(ε), and Gc is the critical energy release rate. Moreover,

σ := σ(u) = 2µe(u) + λ tr(e(u))I.

Here, µ and λ are material parameters, e(u) = 1
2 (∇u +∇uT) is the strain tensor, and I the identity

matrix. Key challenges are:
• Relation of ε to spatial discretization parameter h;
• Non-convexity of the underlying energy functional due to the term((

(1− κ)ϕ2 + κ
)

σ(u), e(w)
)

.
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Philosophy of our analysis and discretization

• Formulation as a semi-linear form (combining both
equations/inequalities for u and ϕ):

Formulation
For n = 1, 2, 3, . . .: Find Un := U := {u, ϕ} ∈ V×W such that

A(U)(Ψ−U) ≥ 0 ∀Ψ := {w, ψ} ∈ V×Win. (3)

• Relaxing the inequality constraint (e.g., augmented Lagrangian);

• Discretization in time (incremental formulation);

• Adaptive discretization in space;

• Newton’s method (needs to be modified for fully monolithic solution!)
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A monolithically-coupled formulation
Formulation
Given ϕn−1, ϕ̃ ∈ H1(B). For the loading steps n = 1, 2, 3, . . .: Find
Un := U = {u, ϕ} ∈ {uD + V} ×W such that

A(U)(Ψ) =
((

(1− κ)ϕ̃2 + κ
)

σ(u), e(w)
)

+ (1− κ)(ϕ σ(u) : e(u), ψ) + Gc

(
− 1

ε
(1− ϕ, ψ) + ε(∇ϕ,∇ψ)

)
+ ([Ξ + γ(ϕ− ϕn−1)]+, ψ)

= 0 ∀Ψ := {w, ψ} ∈ V×W,

where ϕ̃ is a linear extrapolation of ϕn−1 and ϕn−2.

Why monolithic?

1 High accuracy of coupling conditions;
2 Numerical stability and implicit discretizations;
3 Consistent modeling of gradient-based optimization and dual-weighted error

estimation;
4 Space-time formulations.
5 Finally, sometimes, the monolithic solution is even more efficient than subiterations

(Gerasimov/Lorenzis; 2016, CMAME).
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Adaptive spatial discretization

• Adaptive spatial discretization:

• Galerkin finite element scheme
with H1 conforming discrete
spaces Vh ⊂ V and Wh ⊂ W
consisting of bilinear functions
Qc

1 on
quadrilaterals/hexahedra.

• The key challenge is the
relation of the model
regularization parameter ε and
the spatial mesh size h (high
mesh resolution required!)
since h < ε.

→ Predictor-corrector mesh
adaptivity with hanging nodes
(the mesh grows with the
fracture).

Figure: Predictor-corrector scheme: 1.
advance in time, crack leaves fine mesh. 2.
refine and go back in time (interpolate old
solution). 3. advance in time on new
mesh. Repeat until mesh doesn’t change
anymore. Refinement is triggered for
ϕ < C = 0.2 (green contour line) here.
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Predictor-corrector mesh refinement 4

4Heister/Wheeler/Wick; CMAME, 2015
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Philosophical and practical questions

• How to model the fracture? As a 2D surface or a 3D (thin) domain?

⇒ Since we nevertheless work in practice with ε > 0, we consider the
fracture as a 3D object.

• The meaning of ε?

⇒ The Biot system is an upscaled model. There is an interplay between the
pore size l and ε. We assume 5 that ε� l

• How to obtain effective laws such as porosity and permeability?

⇒ For the permeability we work with first principle fluid equations
(Navier-Stokes), derive according lubrication laws, which yield
permeabilities. These are plugged into the 3D Darcy flow equations.

5Mikelić/Wheeler/Wick; 2015, Comp. Geosci.
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Interface conditions for pressurized and fluid-filled
cracks 6

• The previous system is incomplete since
force balance between C and a
poroelastic medium is not treated.

• Let us view C as a 3D thin domain with
width much less than length;

• Lubrication theory applies.
• Leading order of the stress in C is −pf I

and at the crack boundary we have
continuity of the contact force

σn = (Ge(u)− αpBI)n = −pf n

⇒
∫

Ω
αpBdiv w dx +

∫
∂C

σnw dS

=
∫

Ω
αpBdiv w dx−

∫
∂C

pf wn dS

=
∫

Ω
(α− 1)pBdiv w dx−

∫
Ω
∇pBw dx +

∫
∂N Ω

pBwn dS

Ω

(0, L)3

with pf

Ω
with pB

C

zoom-in

C

∂C

6Mikelić/Wheeler/Wick; 2019, GEM
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The resulting Euler-Lagrange system

Formulation (Mikelić/Wheeler/Wick 2015 SIAM MMS)
Let p ∈ H1(B) be given. Find (u, ϕ) ∈ {uD + V} ×W such that((

(1− κ)ϕ2
+ + κ

)
σ+(u), e(w)

)
+ (σ−(u), e(w))

−(α− 1)(ϕ2
+p, div w) + (ϕ2

+∇p, w) = 0 ∀w ∈ V,
(4)

and
(1− κ)(ϕ σ+(u) : e(u), ψ−ϕ)−2(α− 1)(ϕ+ p div u, ψ) + 2 (ϕ+∇p u, ψ)

+ Gc

(
− 1

ε
(1− ϕ, ψ−ϕ) + ε(∇ϕ,∇(ψ− ϕ))

)
≥ 0 ψ ∈ Win ∩ L∞(B),

(5)

where7

σ+ = 2µe+ + λ < tr(e) > I, σ− = 2µ(e− e+) + λ
(
tr(e)− < tr(e) >

)
I,

and e+ = PΛ+PT , where < · > is the positive part of a function. Moreover, for d = 2,

Λ+ := Λ+(u) :=
(
< λ1(u) > 0

0 < λ2(u) >

)
.

7Miehe et al. (2010); see also Amor et al. (2009) for another version
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Extension to flow in porous media and the fracture 8 9

A generalized pressure equation (a diffraction system):

ρ0θ∂tp−∇ ·
Kρ0

µ
(∇p− ρ0g) + ωp = q̃ in Ω,

where

θ := θ(x, t) := χΩR

(
(

3α2

3λ + 2µ
+

1
M

)
)
+ χΩF

ϕFcF ,

ω := ω(x, t) := χΩF
ρ0

FcF∂t ϕF ,

q̃ := q̃(x, t) := χΩR
qR − χΩR

∂t
( 3α

3λ + 2µ
σ̄
)
+ χΩF

qF − χΩF
ρ0

F∂t ϕF ,

K := K(x, t) := χΩR
KR + χΩF

KF ,

µ := µ(x, t) := χΩR
µR + χΩF

µF ,

ρ0 := χΩR
ρ0

R + χΩF
ρ0

F .

The interface conditions on Γ := ΩF ∩ΩR are given by

pR = pF ,

KR

µR
(∇pR − ρ0

Rg) · nR =
w2

12µF
(∇pF − ρ0

Fg) · nF.

C

Ω

(0, L)3

8Ladyzhenskaja/Solonnikov/Uralceva; AMS Vol. 23, 1968
9Lions/Magenes, tome 1, chapitre 3, section 4, 1968
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Three-field problem for fluid-filled fractures

• Pressure diffraction (Biot’s system plus 3d lubrication): Find p ∈ U := L2(0, T; H1(Ω)):

(ρ0θ∂tp, ϕp) + (
Kρ0

µ
(∇p− ρ0g),∇ϕp) + (ωp, ϕp) = (q̃, ϕp) ∀ϕp ∈ U.

• Linear elasticity: Find u ∈ V := H1
0(Ω):((

(1− κ)ϕ̃2 + κ
)
Ge(u), e(w)

)
− (α− 1)(ϕ̃2p, div w) + (ϕ̃2∇p, w) = 0 ∀w ∈ V.

• Phase-field: Find ϕ ∈ W := L2(0, T; H1(Ω)):

(1− κ)(ϕ Ge(u) : e(u), ψ)− 2(α− 1)(ϕ p div u, ψ) + 2 (ϕ∇p u, ψ)

+ Gc

(
− 1

ε
(1− ϕ, ψ) + ε(∇ϕ,∇ψ)

)
≥ 0 ∀ ψ ∈ W,

and ∂t ϕ ≤ 0.

• Two formulations (monolithic and partially decoupled) on the next two
slides.
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A monolithic form of the three-field problem 10

• Convex constraint of the variational inequality assures the irreversibility
and entropy compatibility of the crack formation;

• Constructing the corresponding Lyapunov functional that is linked to a
generalized free energy. This procedure requires less regularity than a
decoupled approach;

• Establishing existence of a solution to the incremental (time-discretized)
problem through convergence of a finite dimensional approximation:

Theorem
There exists at least one variational solution {u, ϕ, p} ∈ VU ×H1(B) ∩ K×VP for
the variational three-field problem.

• A robust numerical solution algorithm based on Newton’s method with
backtracking line-search and quasi-Newton steps.

10A. Mikelić et al.; 2015, Comp. Geosci.
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A decoupled form of the three-field problem via
phase-field fixed-stress splitting

At each time tn

repeat
Solve two-field fixed-stress (inner loop):

Solve the (linear) pressure diffraction problem
Solve the (nonlinear) fully-coupled elasticity phase field formulation

until Stopping criterion

max{‖pl − pl−1‖, ‖ul − ul−1‖, ‖ϕl − ϕl−1‖} ≤ TOLFS, TOLFS > 0

for fixed-stress split is satisfied
Set: (pn, un, ϕn) := (pl, ul, ϕl).
Increment tn → tn+1.

Remark:
For the original version of fixed stress refer to Settari/Maurits (1998) and
many presentations and references given at this conference.
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Numerical Tests

Tests:

1 Extension to a fluid-filled Sneddon test: p is an unknown, Biot’s
coefficient is α = 1 (full coupling in the poroelastic regime), phase-field
fixed-stress solution algorithm;

2 Two parallel 3D fractures: predictor-corrector mesh adaptivity and
parallel high performance computing (using p4est11, trilinos12, and MPI)

Software:

• IPACS13 (Integrated Phase Field Advanced Crack Simulator) based on
deal.II14

11http://www.p4est.org/
12https://github.com/trilinos/Trilinos
13Wheeler, Wick, Lee; CMAME, 2020
14www.dealii.org
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IPACS (C++)
• Version 6.0: phase-field fracture, coupled to poroelasticity and a two-phase fluid inside

the fracture15

• Approx. 16 000 lines of code, which is then based on deal.II
(main coding two-phase flow April 2017 at ICES)

• 2D and 3D (switch by template parameter)
• Quadrilateral/hexahedra meshes with hanging nodes16

• Parallelized using MPI

• Fixed-stress / predictor-corrector mesh adaptivity solution loop:

• EG (enriched Galerkin17) for pressure and saturations (DG faces; implemented also for
adaptive mesh refinement!)

• CG for displacements, phase-field, crack width

15Lee et al.; SIAM MMS, 2018; Wheeler et al. CMAME, 2020
16Carey/Oden; 1984
17Sun/Liu; SISC, 2009
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Example 1

Thomas Wick (LUH) Phase-field fracture in porous media 23



A fluid-filled fracture in poroelasticity (extension of
Sneddon’s test18
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Figure: Top: fracture pattern. Bottom: temporal convergence studies of the maximum
pressure, the fracture length and at right the number of fixed-stress iterations.

18Lee/Wheeler/Wick; 2017, JCAM
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Example 2
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Two parallel fractures: the setting 19

Parameters:

• Critical energy release rate:
Gc = 1.0Pa ·m;

• Lamé coefficients µ = 4.2× 107 Pa and
λ = 2.8× 107 Pa;

• Increasing pressure: p = t× 5× 104 Pa,
where t is the current time;

• Time step size δt = 0.005s and spatial
discretization parameter
hmin = 0.0270633m

→ Maximum number of total DoFs is
4, 074, 532 (predictor-corrector
refinement);

→ 17 hours total CPU time.

Configuration:

19Lee/Wheeler/Wick; 2016, CMAME
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Two parallel fractures
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Figure: Propagation of two parallel fractures for increasing pressure for each time
step n. For each figure, the inner bold penny shape fractures indicate the initial two
parallel fractures and red wire lines illustrates the part of adaptive meshes. We
observe the stress-shadowing effect that causes the two fractures to curve away. At
right, convergence studies under mesh refinement are shown.
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Global-local approach in porous media 20

• Fluid injection into fracture inside porous medium

• Local variables: displacements u, pressure p and phase-field ϕ

• Global: only mechanics (displacements u)

• Predictor-corrector scheme for advancing local domain

Figure: Configuration (left) and pressure evolution in the local domains (right).

20Noii/Aldakheel/Wick/Wriggers; CAMWA 2021
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Conclusions

Conclusions

• Modeling of fluid-filled phase-field fractures in porous media

• Predictor-corrector schemes for mesh and global/local adaptivity

• Code framework (IPACS) and simulations (2D and 3D)

• Extension to a global-local multiscale approach

Key references of this talk
• Adaptive GL approach: N. Noii, F. Aldakheel, T. Wick, P. Wriggers; CMAME, Vol. 361

(2020), 112744
• IPACS: M.F. Wheeler, T. Wick, S. Lee; CMAME, Vol. 367 (2020), pp. 113124
• PFF fixed stress and width comp.:

S. Lee, M.F. Wheeler, T. Wick; JCAM, Vol. 314 (2017), pp. 40-60;
• Coupling PFF, poroelasticity, and single phase-fluid:

A. Mikelić, M.F. Wheeler, T. Wick; SIAM MMS, Vol. 13(1), 2015, pp. 367-398
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The end

Figure: Quote from my book, p. IX, de Gruyter, 2020.

Thank you very much for your attention!

Thomas Wick
Institute of Applied Mathematics

Leibniz University Hannover
https://thomaswick.org
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