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Phase-field / variational modeling for fracture

Key idea (Bourdin/Francfort/Marigo; 1998/2000):
® Numerical approach is based on Ambrosio-Tortorelli elliptic functionals';

¢ Discontinuities in the displacement field across the lower-dimensional crack surface C
are approximated by an auxiliary (smoothed indicator) function ¢:

1 € _
re(¢)=£\|lf¢||2+§||v¢\\2 - HTIC) fore—0,

in the sense of the I'-limit.

Figure: Left: Crack in a sheet of paper caused by cutting with scissors and.
Right: diffusive fixed-topology finite element phase-field modeling. The
transition zone (green) has width e > 1 > 0.

! Ambrosio/ Tortorelli; 1990, 1992
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Modeling phase-field fracture in a nutshell

® Griffith’s model for brittle fracture: Energy functional E is minimized with respect to
kinematically admissible displacements u and any crack path ¢ satisfying a crack
growth condition

0t < 0 (variational inequality! Rice’s condition)
® Crack C with length I advances if energy release rate is critical:

oP
(5 ®10) +Ge) - au(t) =0,
where P is the potential energy and G, the fracture toughness.
® Variational fracture in pure elasticity: Francfort and Marigo et al. (since 1998) 2

¢ Thermodynamically consistent phase-field framework: Amor et al. 2009 and Miehe et
al. 2010, CMAME and IJNME

® Pressurized and fluid-filled fractures in poroelasticity: Mikeli¢ et al. (since 2013, ICES
report 13-15; published in 2019 in GEM)?

2Further important contributations: Bourdin, Chambolle, Dal Maso et al., Burke et al.,
Larsen et al., Allaire et al.
3 Also other contributions from Bourdin et al. (2012), Almi et al. (2014), Miehe et al. (2015),
Heider et al. (2015)
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2 Phase-field fracture in elasticity



The resulting Euler-Lagrange system
Formulation (PFF for elasticity)
Define V := H}(B), Wy, := {w € H'(B)|w < ¢° < 1a.e. on B}, and W := H'(B). For the

loading steps n = 1,2,3, .. .: Find vector-valued displacements and a scalar-valued phase-field variable
(", ¢") := (u, ¢) € {up + V} x W such that

(((1 —x)¢* +x) a(u),e(w)) =0 YweV, 1)

(1= x)(p o) : e(u), y—9)
+G(~1(1 - p—9) +e(Vo, V(@ —9))) 20§ € Wi, 1L (B)
Therein, €,x > 0 and k = o(¢), and G is the critical energy release rate. Moreovet,
o:=o0(u) =2pe(u) + A tr(e(u))l.

Here, y and A are material parameters, e(u) = % (Vu + Vul) is the strain tensor, and I the identity
matrix. Key challenges are:
® Relation of € to spatial discretization parameter h;

® Non-convexity of the underlying energy functional due to the term

(1 =x)¢? +x) ow),e(w)).
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Philosophy of our analysis and discretization

¢ Formulation as a semi-linear form (combining both
equations/inequalities for u# and ¢):

Formulation
Forn=1,2,3,...: Find U" := U := {u, ¢} € V x W such that

AU -U) >0 VY :={w, ¢} €V x W, (3)

Relaxing the inequality constraint (e.g., augmented Lagrangian);

® Discretization in time (incremental formulation);

Adaptive discretization in space;

¢ Newton’s method (needs to be modified for fully monolithic solution!)



A monolithically-coupled formulation
Formulation

Given ¢"~1, ¢ € H'(B). For the loading stepsn = 1,2,3, .. .: Find
u" :=U={u, ¢} € {up + V} x W such that

AW)(Y) = (1= %) +x) o(u),e(w))

+ (1= 1) (9 o) : e(w), §) + Ge

+(E+r(p—¢" Mt p)
=0 V¥:={wy}cVxW,

—%(1 — 0. 9) +£(Vg, V)

where § is a linear extrapolation of ¢! and ¢ 2.



A monolithically-coupled formulation

Formulation

Given ¢"~1, ¢ € H'(B). For the loading stepsn = 1,2,3, .. .: Find
ur:=UuU={u,¢} € {up + V} x W such that

AW)(Y) = (1= %) +x) o(u),e(w))

+ (1= 1) (9 o) : e(w), §) + Ge

+(E+r(p—¢" Mt p)
=0 YWW:={wyp}eVxW,

(- g,) +e(Vo, VY))

where § is a linear extrapolation of ¢! and ¢ 2.

Why monolithic?

1 High accuracy of coupling conditions;

2 Numerical stability and implicit discretizations;

3 Consistent modeling of gradient-based optimization and dual-weighted error
estimation;

4 Space-time formulations.

5 Finally, sometimes, the monolithic solution is even more efficient than subiterations
(Gerasimov /Lorenzis; 2016, CMAME).



Adaptive spatial discretization

® Adaptive spatial discretization:

® Galerkin finite element scheme
with H' conforming discrete
spaces V, C Vand W, C W
consisting of bilinear functions
Qfon
quadrilaterals /hexahedra.

® The key challenge is the
relation of the model
regularization parameter € and
the spatial mesh size h (high
mesh resolution required!)
since h < e.

— Predictor-corrector mesh
adaptivity with hanging nodes
(the mesh grows with the
fracture).

time n time n+1

mesh 1 —

mesh 2 7£ 2
Il
E

Figure: Predictor-corrector scheme: 1.
advance in time, crack leaves fine mesh. 2.
refine and go back in time (interpolate old
solution). 3. advance in time on new
mesh. Repeat until mesh doesn’t change
anymore. Refinement is triggered for

@ < C = 0.2 (green contour line) here.



Predictor-corrector mesh refinement 4

4Heister/ Wheeler/Wick; CMAME, 2015
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Philosophical and practical questions

® How to model the fracture? As a 2D surface or a 3D (thin) domain?

= Since we nevertheless work in practice with € > 0, we consider the
fracture as a 3D object.

® The meaning of €?

= The Biot system is an upscaled model. There is an interplay between the
pore size [ and e. We assume ° that & >> |

® How to obtain effective laws such as porosity and permeability?

= For the permeability we work with first principle fluid equations
(Navier-Stokes), derive according lubrication laws, which yield
permeabilities. These are plugged into the 3D Darcy flow equations.

5Mikeli¢/Wheeler/Wick; 2015, Comp. Geosci.
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Interface conditions for pressurized and fluid-filled

cracks ©

oLy

® The previous system is incomplete since
force balance between C and a Q
poroelastic medium is not treated.

® Letus view C as a 3D thin domain with
width much less than length;

® Lubrication theory applies.

and at the crack boundary we have

¢ Leading order of the stress in C is —pyl '/
. zoom-in
continuity of the contact force

on = (Ge(u) — appl)n = —pn
=>/ apgdivwdx-l—/ onw dS
Q aC

= /Q appdiv w dx — /BC prwn dS

= [ (a—1)ppdivwd —/v d / ds
/Q(uz )ppdiv w dx 5 ppw dx + aNQpBwn

6Mikeli¢/Wheeler/ Wick; 2019, GEM
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The resulting Euler-Lagrange system

Formulation (Mikeli¢/Wheeler/Wick 2015 SIAM MMS)
Let p € H'(B) be given. Find (u, ¢) € {up + V} x W such that

(((1 —x)¢% +x) ot (u),e(w)) + (o (u),e(w))
—(a—1)(¢%p,divw) + (3 Vp,w) =0 YweV,

4)

A=) (p o™ (u) : e(w), p—@)—2(x — 1) (g4 p divu, ) +2 (¢4 Vp u, ) -
+ Gc(—%(l — 9. ¥=9) +e(Vo, V(= 9))) 20 ¢ € W, NL(B),
where”

ot =2uet +A<tr(e) >1, o =2ule—e")+A(tr(e)— < tr(e) >)I,

and e = PATPT, where < - > is the positive part of a function. Moreover, for d = 2,

At = At () = << Al(()u) g < Az(gu) >) '

"Miehe et al. (2010); see also Amor et al. (2009) for another version



9

Extension to flow in porous media and the fracture 8
A generalized pressure equation (a diffraction system):

0 Kp® 0 5 ¢
0°00p — V- T(W—p g)twp=4§ inQ,

where

0:=0(x,t) == 32
=0(xt) = Xog ((m + M)) T XQp PFF:

w = wlxt) = X ARCFArE,

P 30 _

gi=q(xt) = XQR IR ~XQp 3t(mt7) +XQpTF ~ XQFP23t‘PF,
K:=K(xt):= Xag KR +XQFKF,

pi= ot = XQp KR T XQp HF/

o= Xag P% +xop Pg-
The interface conditions on T := Qp N Qg are given by

PR = PF,
2

=2 — o) -
= Topg (VPF 7 PES) - 1E-

K
R (Vpr - pRg) -1
MR

8Lav:lyzhenskaja/ Solonnikov /Uralceva; AMS Vol. 23, 1968
9Lions/ Magenes, tome 1, chapitre 3, section 4, 1968




Three-field problem for fluid-filled fractures

Pressure diffraction (Biot’s system plus 3d lubrication): Find p € U := L2(0, T; H' (Q)):

0 py 4 (K 0 p ) = (3, o p

(0709, ") + (= = (VP = 078), V¥) + (wp, ¢") = (4,97)  VoP € U.
Linear elasticity: Find u € V := H}(Q):
(((1 — )¢ +x) ge(u),e(w)) — (& = 1)(¢%p, divw) + (@P*Vp,w) =0 Ywe V.

Phase-field: Find ¢ € W := L2(0, T; H'(Q)):

(1 —=x)(g Ge(u) : e(u), ) = 2(a = 1)(¢ p div u, ) +2(¢Vp u, ¢)

1
+Ge(—£(1-9.9) +e(Vy,V9)) 20 VypeW,

and d;¢ < 0.

Two formulations (monolithic and partially decoupled) on the next two
slides.



A monolithic form of the three-field problem '°

® Convex constraint of the variational inequality assures the irreversibility
and entropy compatibility of the crack formation;

¢ Constructing the corresponding Lyapunov functional that is linked to a
generalized free energy. This procedure requires less regularity than a
decoupled approach;

¢ Establishing existence of a solution to the incremental (time-discretized)
problem through convergence of a finite dimensional approximation:
Theorem

There exists at least one variational solution {u, ,p} € Vyy x H(B) NK x Vp for
the variational three-field problem.

® A robust numerical solution algorithm based on Newton’s method with
backtracking line-search and quasi-Newton steps.

10A . Mikeli¢ et al.; 2015, Comp. Geosci.
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A decoupled form of the three-field problem via
phase-field fixed-stress splitting

At each time "
repeat
Solve two-field fixed-stress (inner loop):
Solve the (linear) pressure diffraction problem
Solve the (nonlinear) fully-coupled elasticity phase field formulation
until Stopping criterion

max{[p' = p" [ lu' = w1, [|¢' — ||} < TOLgs, TOLgs >0

for fixed-stress split is satisfied

Set: (p",u", ¢") := (pl, ul, gol).
Increment " — 11,

Remark:
For the original version of fixed stress refer to Settari/Maurits (1998) and
many presentations and references given at this conference.
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Numerical Tests

Tests:

1 Extension to a fluid-filled Sneddon test: p is an unknown, Biot’s
coefficient is & = 1 (full coupling in the poroelastic regime), phase-field
fixed-stress solution algorithm;

2 Two parallel 3D fractures: predictor-corrector mesh adaptivity and
parallel high performance computing (using p4est!!, trilinos!?, and MPI)

Software:

® [PACS® (Integrated Phase Field Advanced Crack Simulator) based on
deal.IT*#

i http:/ /www.p4est.org/

2https:/ / github.com/trilinos/ Trilinos
BWheeler, Wick, Lee; CMAME, 2020
4www.dealii.org



IPACS (C++)

® Version 6.0: phase-field fracture, coupled to poroelasticity and a two-phase fluid inside
the fracture®

® Approx. 16000 lines of code, which is then based on deal.Il
(main coding two-phase flow April 2017 at ICES)

® 2D and 3D (switch by template parameter)
® Quadrilateral/hexahedra meshes with hanging nodes!®
¢ Parallelized using MPI

15 ee et al.; SIAM MMS, 2018; Wheeler et al. CMAME, 2020
16Carey /Oden; 1984
17Sun/Liu; SISC, 2009
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IPACS (C++)

Version 6.0: phase-field fracture, coupled to poroelasticity and a two-phase fluid inside
the fracture®

Approx. 16000 lines of code, which is then based on deal Il
(main coding two-phase flow April 2017 at ICES)

2D and 3D (switch by template parameter)

Quadrilateral /hexahedra meshes with hanging nodes'®
Parallelized using MPI

Fixed-stress / predictor-corrector mesh adaptivity solution loop:

Solve
Solve Solve ) Compute width
P @) Saturation (s) Displacement- (w) using (1s)

ressure aturation (s w) usin,
r Phase-Field (u, ¢) € s

Fixed-Stress Iteration

EG (enriched Galerkin!?) for pressure and saturations (DG faces; implemented also for
adaptive mesh refinement!)

CG for displacements, phase-field, crack width

151 ee et al.; SIAM MMS, 2018; Wheeler et al. CMAME, 2020
16Carey /Oden; 1984
7Sun/Liu; SISC, 2009




Example 1



A fluid-filled fracture in poroelasticity (extension of
Sneddon’s test!®

Pressure [Pa]

Number of erations

o
01 02 03 04 05 06 0 01 02 03 04 05 06 o o1

02 03 04 05 06
Time [s] Time [s]

Time [s]

Figure: Top: fracture pattern. Bottom: temporal convergence studies of the maximum
pressure, the fracture length and at right the number of fixed-stress iterations.

181 ee /Wheeler/Wick; 2017, JCAM




Example 2



Two parallel fractures: the setting !°

Parameters:

¢ Critical energy release rate: Configuration:
G; = 1.0Pa - m;

® Lamé coefficients = 4.2 x 107 Pa and
A = 2.8 x 107 Pa;

® Increasing pressure: p =t x 5 x 10* Pa,
where t is the current time;

¢ Time step size 6t = 0.005s and spatial
discretization parameter
hmin = 0.0270633m

— Maximum number of total DoFs is
4,074,532 (predictor-corrector
refinement);

— 17 hours total CPU time.

19Lee/Wheeler/Wick; 2016, CMAME
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Two parallel fractures

Bulk Energy

h 082
h  =0.0541226)

Crack Energy
__h,=021650

) h =0.1082

wf |- --h,,=0.0541226)

0 00+ 0% o0 01 o oW 0% o oz
Time

Figure: Propagation of two parallel fractures for increasing pressure for each time
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Global-local approach in porous media 2
¢ Fluid injection into fracture inside porous medium
® Local variables: displacements u, pressure p and phase-field ¢
® Global: only mechanics (displacements u)

® Predictor-corrector scheme for advancing local domain

Local — scale pressure

0,24) (24,24)

(0,0) (24,0)

P
et BT for

Examplel. Time and degrees of freedom comparison between the single-scale and GL problems for
different reservoir sizes.

Size of reservoir Accumulated time, s Total degrees of freedom
single-scale g/l ratio single-scale g/l
Small 1.9752e+-04 849.0794 23.2632 87723 18315
Medium 6.2474e+04 862.3567 72.4453 171366 18665
Large 1.0559e+05 887.2200 119.0169 256035 19109

Figure: Configuration (left) and pressure evolution in the local domains (right).

20Noii/ Aldakheel /Wick / Wriggers; CAMWA 2021
~ ThomasWick(LUH) ~ Phase-field fracture in porous media 29
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Conclusions

Conclusions

Modeling of fluid-filled phase-field fractures in porous media

Predictor-corrector schemes for mesh and global/local adaptivity

Code framework (IPACS) and simulations (2D and 3D)
¢ Extension to a global-local multiscale approach

Key references of this talk

® Adaptive GL approach: N. Noii, F. Aldakheel, T. Wick, P. Wriggers; CMAME, Vol. 361
(2020), 112744

¢ JPACS: M.F. Wheeler, T. Wick, S. Lee; CMAME, Vol. 367 (2020), pp. 113124

® PFF fixed stress and width comp.:
S. Lee, M.E. Wheeler, T. Wick; JCAM, Vol. 314 (2017), pp. 40-60;

® Coupling PFF, poroelasticity, and single phase-fluid:
A. Mikeli¢, M.E. Wheeler, T. Wick; SIAM MMS, Vol. 13(1), 2015, pp. 367-398
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The end

10 Meetings with Andro Mikeli¢ have been just incredibly extraordinary, and demonstrated how
mathematical PDE analysis and numerical simulations yield fruitful results. During Andro’s sabbat-
ical in the first half of 2013 at UT Austin, we had nearly every day discussions resulting in [318] and
several follow-up publications. This experience has been influential to me and was an outstanding
opportunity being a young Postdoc.

Figure: Quote from my book, p. IX, de Gruyter, 2020.

Thank you very much for your attention!

Thomas Wick

Institute of Applied Mathematics
Leibniz University Hannover
https://thomaswick.org
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