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This work proposes a new unsteady 2-D permeability pore
pressure-dependent analytical model for a wellbore near a sealing
fault, where the solution is based on an integro-differential
solution of the Nonlinear Hydraulic Diffusivity Equation (NHDE)
through Green's Functions (GF's). The model also considers the
variation in the properties of the rock and the fluid present inside
its pores.

Abstract

Introduction

The proposed model is based on combined asymptotic series
expansion and GF for the sealing fault well-reservoir setting. The
GF related to this problem can be found in Carslaw and Jaegger
(1959). The solution is based on the following premises:
(1) Permeability pore pressure-dependent
(2) Mechanical hysteresis of porous media is negligible
(3) Small pressure gradient
(4) Newtonian fluid inside porous media
(5) Uniform net pay reservoir
(6) Skin and storage effects are not considered
(7) Well fully penetrates reservoir rock
(8) Deformable, homogeneous, linear elastic and isotropic
reservoir
(9) Isothermal, single-phase flow in the porous media
(10) Homogeneous initial and boundary condition

Model Assumptions

Fig.2 shows the semi-log plot of the dimensionless pseudo-pressure as
function of the dimensionless time. The smooth displacement between
the curves shows the effect of the permeability drop, in comparison to
the linear solution 𝑝 . Fig.3 shows the log-log plot of the
dimensionless pseudo-pressure and its Bourdet derivative as function
of the dimensionless time. The sealing fault effect can be notice
through the slope amplification of the derivative curve.

Results and Discussions

This work presented an analytical solution of the NHDE for permeability 
decay evaluation along a reservoir life cycle based on coupled GF-
integro-differential model. The results were compared to a porous 
media oil flow simulator and has shown close accuracy , therefore it 
may be a useful mathematical tool to calibrate new numerical models 
that may arise in porous media literature.

Conclusions

GF’s-based analytical models have been proposed to solve the
NHDE for isothermal flow through porous media and has shown
close agreement, when compared to numerical flow simulator,
(Barreto Jr. et al., 2011 and 2012), (Sousa et al., 2015) and
(Fernandes et al., 2021a). This work proposes evaluating the
permeability decay as a function of pore pressure, using a new
coupled-pseudopressure model with variable permeability and
GF’s to solve NHDE with source near a sealing fault (Fig.1).

Fig.1: Permeability loss effect in porous media: (a) Initial condition (No 
production); (b) Pores collapsed, after several years of production.

Results

Table 1. Label in 24pt Calibri.

The NHDE for the oil flow in a permeability pore pressure
dependente porous media is:
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The new proposed pseudopressure function is:

            𝑚 𝑝 = 𝑘 𝑝 𝑑𝑝′                                       (2)

Where: 𝜂(𝑝) is hydraulic diffusivity function [sec/m2]; 𝑓 𝒓, 𝑡 is the
oil source [kgf/cm2], 𝒓 is the position vector in Cartesian
coordinates (𝑥, 𝑦, 𝑧) [m], 𝑡 is the time [sec], pb is a reference
pressure [kgf/cm2], 𝑘 𝑝 is the permeability pore pressure
dependent function [mD] and 𝑚 𝑝 is the pseudopressure function
[mD kgf/cm2] .The dimensionless variables are:
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Where: 𝑥 , 𝑦 , 𝑡 , 𝑘 , 𝜂 , and 𝑚 (𝑡 ) are the dimensionless
Cartesian coordinates, time, permeability, hydraulic diffusivity
function and wellbore pseudopressure, respectively. 𝑘 is
permeability in initial pressure [mD]; 𝜂 is hydraulic diffusivity in
initial pressure, [sec/m2]; 𝑡 is time [sec]; 𝑐 is total compressibility,
[cm2/ kgf]; 𝜇 is fluid dynamic viscosity [cp] and h is the reservoir
thickness [m]. The dimensionless form of the dimensionless NHDE
is:
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The general solution is:
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Analytical Model

Fig.2: Semi-log plot of the dimensionless pseudo-pressure as 
function of the dimensionless time.

Fig.3: Log-log plot of the dimensionless pseudo-pressure and 
its Bourdet derivative as function of the dimensionless time. 

The model is calibrated through a numerical oil flow simulator. The
calibration was performed by replacing the pressure and
permeability values in a computational table in the simulator. The
values of the analytical model and the numerical simulator were
presented in a semi-log and log-log plot and the results matched.

Model Calibration
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