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Introduction

In this work, we present a fast Machine Learning (ML)-based inverse modeling for
real-time subsurface history matching and forecasts. The work aims to support CO2
related operations and forecasting CO2 and pressure plume development for DOE
Science-informed Machine Learning to Accelerate Real Time (SMART) initiative.
The proposed method utilizes one of the current efficient data assimilation methods,
1.€., Hierarchical Bayesian with Gaussian Prior (through power-transformation of
unknowns). In Bayesian framework, the prior uncertainty of subsurface unknown
properties, €.g., permeability field, 1s typically parameterized as log-normal with mean
and covariance. However, there are two major challenges for high-dimensional
applications:

* the number of (expensive) forward model simulations

* computational burdens for high-dimensional matrix-matrix computations.

These challenges were partly addressed in PCGA [Lee, Yoon et. al., 2016] that utilizes
state-of-art linear dimension reduction techniques for the Bayesian solution.

Still, PCGA requires O(100) numerical model runs, which would not be feasible for
extremely high dimension problems such as 10° unknown permeability
characterization.

To address these challenges for next generation inversion, we use ML to construct a
reduced order model (ROM) for the forward simulation and perform a nonlinear
dimension reduction for inverse modeling. This approach will accelerate both forward

. modeling and inverse modeling tasks without losing much accuracy.

Model Reduction

Forward modeling:
y = G(m) = G(D(z)))

* yisa(nobs x 1) simulated observation vector,

* G 1s a multiphase flow model that produces outputs at obs. locations
* misa(mx 1) permeability vector,

* D is a decoder or deterministic map from z to s

* z1sa(kx1)latent space vector.

G can be obtained from any latent modeling and here we used Variational
Auto Encoder (VAE).

Training
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Machine Learning Architecture
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Encoder-Decoder Architecture

- Variational Autoencoder Geostatistical Approach
(VEGA)

Main conceptual idea

Forward problem: y = G(m)
with I Gauss Newton iterations from m° = my,,,.;,,
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With any (nonlinear) dimension reduction G of m
y = G(D(z)), dim(z) <« dim(m)
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with step length (learning rate a). And the posterior covariance is given as
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VAE Is our choice since It constructs the prior z ~ N(0,1)!
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Experimental Results

- Validation with Single Phase Flow Application

Here we used USGS MODFLOW as “full” physics single phase flow model. 10,000
(100x100) unknown k field has been compressed to 32 latent dimension through
VAE. With noisy 16 observation wells with head data and 33 forward model
runs/iteration, the best estimate 1s converged in 3 iterations.
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- Multiphase Flow Application

ROM: ML-based model with physics-based loss functions

* Multiphase flow with CNN-LSTM-DenseLayer for 1in a deep reservorr.
 MSE values of SE-05 for both pressure and CO2 saturation prediction
* a forward run time of trained model 1s less than 1 second
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ROM: ML-based model with physics-based loss functions
o 25x25x3 unknown k => z with 32 latent dimension

e 720,000 noisy transient pressure observations

* Only ~3 min inversion time on a single core laptop

* Convergence with any (reasonable) 1nitial points due to data-driven prior
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