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Light Gradient Boosting Machine and Extreme Gradient Boosting were the two machine
learning approaches, which were used to predict the profit responses as a function of several
variables. Three different scenarios were defined to facilitate this comparison.

• Both algorithms show satisfying predictions.

• the LGBM algorithm produces much more complex trees by following leaf wise split
approach rather than a level-wise approach which is the main factor in achieving higher
accuracy. However, it can sometimes lead to overfitting, which can be avoided by setting
the controlling parameters.

• In equal condition and number of simulation runs, LightGBM algorithms has shows more
realistic distribution of responses.

Petroleum reservoir modeling procedure for production optimization is a complex problem
and requires significant computational costs -rooted in reservoir simulation and post-
processing. The advent of Artificial Intelligence -particularly supervised machine learning
algorithms- in the petroleum industry is gained much popularity because of efficient
functionality in terms of high dimensional data, computational cost and time. Several
algorithms and methods were used to built models in order to assess the well placement
problem in heterogeneous reservoir models [1,2]. The Extreme Gradient Boosting (xGBoost)
and Light Gradient Boosting Machine (LightGBM) algorithms are then used to build intelligent
models [3,5]. Three scenarios were defined to evaluate these two algorithms:

• Evaluate the LightGBM and xGBoost algorithms in field optimization using Net Present
Value (NPV) Function

• Compare the performance of LightGBM and xGBoost 

Fig. 1: Reservoir dimensions.
It has 30,960 (43×36×20) grids.

Fig. 5: Result of two xGBoost and LightGBM algorithms in three different scenarios.
Scenario 1: The predicted NPVs of possible locations for production well in homogeneous reservoir.

Scenario 2: The predicted NPVs of possible locations for production well in heterogeneous reservoir.

Scenario 3: The predicted vs calculated NPVs of possible locations for production and injection wells.

Scenario
R-squared (%)

Number of simulation runs
xGBoost LightGBM

1 72.2 90.5 121

2 75.4 88.6 121

3 99.5 99.9 276

Table 3: Results of two different optimization algorithms.

Notice: The total number of possible locations for well placement is 43×36=1548.

Scenario Description Optimazation Parameters

1 a homogeneous reservoir with just one production well Production well Location

2 a heterogeneous channelized reservoir with just one production well Production well Location

3 a heterogeneous channelized reservoir waterflood flooding Production and Injection Well Locations

Scenario 1 Scenario 2 Scenario 3

xGBoost Results

LightGBM Results
Scenario 1 Scenario 2 Scenario 3

Methodology

Fig. 4: Methodology and Workflow.

Fig. 2 – permeability (Left) ,  and porosity (Right) distribution in the homogeneous non-channelized scenario

Fig. 3 – permeability (Left) ,  and porosity (Right) distribution in the channelized scenarios (Sliced layers 9-20)

Scenario Permeability 
(mD)

Porosity 
(%)

OOIP
( × 109 STB)

Production Rate
(STB/Day)

Injection Rate 
(STB/Day)

1 2500 20 1.65 12000 -

2 0 - 14205 0-32 8.14 11000 -

3 0 - 14205 0-32 8.14 10000 10000

Table 1: Description of optimization Scenarios.

Table 2: Reservoir Characterization and operational 
conditions in each scenarios.


