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Abstract
Geomechanical deformation can alter the flow field that impacts solute mass
fluxes. Despite its importance, the effects of the coupling between geomechan-
ical deformation and the flow field on solute transport behavior are not fully
known. In this paper, we study the impact of this coupling on the solute con-
centration distribution. The concentration field is semianalytically derived by
making use of the generalized integral transform technique. We apply the semi-
analytical solution to two uniaxial consolidation problems, the classical Terza-
ghi’s problem with a constant load and the case of periodic loading of a porous
deformable layer. Our results indicate that geomechanical parameters, such as
the Skempton’s coefficient and the soil compressibility, can affect the peak con-
centration as well as the spatial moments of solute plume. In case of periodic
loading, we show that the frequency of loading also plays a key role in regulating
the temporal dynamics of the concentration field.
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1 INTRODUCTION

The coupling between geomechanical deformation and fluid flow is of critical importance in a variety of applications in
hydrogeology and reservoir engineering. In particular, the most severe environmental impacts of these applications are
land subsidence and earthquakes caused by extraction of water and hydrocarbons.1–5 Subsidence is commonly associated
with groundwater extraction in unconsolidated alluvial systems, where the extraction causes compaction.3 Seismicity is
associated with movement along basement faults that are activated due to stresses induced by fluid extraction.2 It is also
acknowledged that earthquakes can be induced by the injection of fluid into the subsurface aquifers. Several studies6, 7
have demonstrated the geomechanical effects of wastewater disposal on seismicity. Geomechanical effects of CO2 storage
in deep saline aquifers include seismicity as well as leakage of brine into fresh groundwater reservoirs.8–10 Themathemat-
ical formulation of ground deformation problems, including injection and production-induced seismicity, is provided by
Biot’s poroelasticity theory.11
Although the characterization of the impact of geomechanical deformations on flow has been thoroughly

investigated,4, 12–17 its consequences on solute transport in aquifers have not received a proportionate amount of atten-
tion despite its importance. It is well known that seismicity can lead to water-level oscillations,18 increased turbidity,19
and possible water release from storage caused by an increase in pore pressure and changes in permeability due to frac-
turing or consolidation.20 The creation of new fractures could increase the aquifer vulnerability to surface contamination,
and the change in preferential flow paths could have severe consequences such as wells capturing younger waters,21
which could be a serious issue, for instance, in indirect potable reuse applications. The water-level decline associated
with subsidence impacts hydrological fluxes and can lead to the overall deterioration of water quality due to a higher
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probability of seawater or wastewater infiltration in the aquifer,21 a possible release from storage of water with different
chemical composition22 and an increased vulnerability to anthropogenic pollution sources.21 The consolidation process
that accompanies subsidence can potentially induce mobilization of contaminants,23 as in case of consolidation-induced
transport in landfills.24
Groundwater vulnerability related to geomechanical deformations has been evaluated through numerical modeling

(deterministic and stochastic), GIS (Geographic Information System) tools, and well capture zone analysis (employing
both field data analysis and numerical models). 25 Although many numerical models focus on the consolidation and frac-
turing induced by water extraction,26–28 a few works23, 29 investigated the effects of consolidation-induced flow on solute
transport, which is of relevance to landfill consolidation. A reduction in the breakthrough time of contaminant across a
plane was reported29 due to consolidation and found advection to have a lesser impact on the contaminant transit time
than variations in geometry and porosity. Strong coupling between the fluid velocity field and the contaminant concentra-
tion profile was found to be necessary for the advective transport to be significant,24 and the reduction in the breakthrough
time is dependent on the compressibility of the porous medium. In agreement to that,30 it is concluded that in order to
retard contaminant transport, the best strategy is to reduce soil compressibility and increase sorption. It was also found31
that the contribution of spatial variability in porosity to contaminant transport is negligible. Recently, the impact of poroe-
lasticity on solute transport was numerically investigated for fluids of different compressibility and viscosity, especially in
the presence of viscous instability,32 and it was found that, analogously to landfills, more compressible porous media lead
to earlier solute breakthrough times.
Most numerical models of coupled geomechanics and transport focus on one-dimensional (1D) domains. This sim-

plification allows the derivation of analytical and semianalytical solutions for the transport problem described by the
advection-dispersion equation (ADE) for different sets of initial and boundary conditions. For example, Li and Cleall33
derived the analytical solution for the concentration field for five different scenarios in a double-layered porous medium,
presenting an application on consolidation-induced advective transport of trichloropropane and analyzing the solute flux
in time to quantify the contribution of advection with respect to diffusion-only models;34 Xie et al.34 developed an analyt-
ical model for the transport of volatile organic compounds in a landfill due to leakage, neglecting consolidation. Despite
these efforts,33, 34 most of the available analytical solutions for the ADE do not deal with the contribution of deformations
to flow, thus missing the opportunity of investigating the functional relationship between geomechanical parameters and
contaminant transport characterisation. For such reasons, there is still need to improve our fundamental understanding
of the impact of geomechanical deformation on transport.
In this work, we develop an integral transform-based semianalytical solution for the coupled flow, transport, and defor-

mation problem in a 1D domain of finite length. The solution is based on the hybrid analytical-numeric methodology
known as the generalized integral transform technique.35–37 The solution is applied to two classic cases: a layer subjected
to consolidation and onewhere an harmonic load is applied. In the first case, our work extends the solution of the classical
Terzaghi’s problem to include transport of a passive tracer.38, 39 Terzaghi’s problem is based on the consolidation of an uni-
axially constrained soil column and its applicability ranges from subsidence14 to landfills to other phenomena that can be
ascribed to a 1D consolidation process.40 In the second case, our solution investigates the transport phenomenon occurring
when the flow field is the result of a periodic loading,39, 41 a model that has been applied to the problem of storm and tidal
wave-induced pore pressure42–44 and to study the effect of seismicwaves.45 The developed solution for solute transport will
allow us to investigate how geomechanical deformation impacts transport quantities both at the local (e.g., solute resident
concentration distribution in space and time) and at the global (e.g., spatial moments of the plume) scales. Our solution
provides new insights on the functional relationships between these transport quantities and the geomechanical parame-
ters. These relationships, which have traditionally been neglected, can improve our understanding of the role of poroelas-
ticity in solute transport and enable discovery of new methods to control the response of engineered subsurface systems.

2 PHYSICAL FORMULATION

2.1 Coupled flow and geomechanics

2.1.1 Case 1: Terzaghi’s problem

Terzaghi’s problem consists of an uniaxial consolidation test under drained conditions, meaning that the soil/rock column
is constrained on all sides except the top boundary,wherewater is allowed to drain out of the domain freely,17, 39 as depicted



BONAZZI et al. 3

F IGURE 1 Physical domain for cases 1 and 2. The left and right boundaries reflect the zero normal displacement condition, and the bottom
boundary is fixed. The red line corresponds to the initial position of the instantaneously released inert tracer

in Figure 1. We consider a water-saturated 1D finite soil/rock layer of dimension 𝐿 along the coordinate direction 𝑥 where
0 ≤ 𝑥 ≤ 𝐿. A sudden stress −𝜎0 (negative implies compression) is applied on the top of the layer at time 𝑡 = 0, which
remains constant in time. The excess pore pressure 𝑝 (above hydrostatic) dissipates over time and space according to the
following governing equation (see [39] for details):

𝜕𝑝

𝜕𝑡
=  𝜕2𝑝

𝜕𝑥2
, (1)

where  is the consolidation coefficient. At 𝑡 = 0, the initial condition for Equation (1) is given by the undrained pressure

𝑝(𝑥, 0) = 𝑝0 = 𝛾𝜎0, (2)

where 𝛾 is the loading efficiency and is a function of the undrained Poisson’s ratio 𝜈𝑢 and Skempton’s coefficient 𝑆𝑘.
Neglecting body forces such as gravity, the quasi-static mechanical equilibrium equation in the 𝑥-direction is

𝜕𝜎𝑥𝑥
𝜕𝑥

= 0. (3)

Assuming the 𝑥-axis as positive downward (see Figure 1), the boundary conditions for the stress 𝜎𝑥𝑥, displacement 𝛿𝑥 and
pressure 𝑝, are:

𝜎𝑥𝑥(0, 𝑡) = −𝜎0; (4)

𝛿𝑥(𝐿, 𝑡) = 0; (5)

𝜕𝑝

𝜕𝑥

||||𝑥=𝐿 = 0; (6)

𝑝(0, 𝑡) = 0. (7)

The solid skeleton deforms in response to a change in the effective stress, which is defined as 𝜎′ = 𝜎 + 𝑏𝑝, where 𝑏 is the
Biot coefficient that can be expressed in terms of the specific storage 𝑆, 𝜈𝑢, and 𝑆𝑘. Assuming that the material behavior
is linear elastic and isotropic (or transversely isotropic with the bedding plane perpendicular to the load axis and the flow
vector), the stress-strain relation is 𝜎′𝑣 = 𝐾𝑣𝜀𝑣, where 𝜎′𝑣 is the effective volumetric stress, 𝜀𝑣 is the volumetric strain, and
𝐾𝑣 is the drained uniaxial modulus that can be obtained from the uniaxial compressibility 𝑐𝑚 = 𝑏∕𝐾𝑣. For the uniaxial
conditions considered here, 𝜎′𝑣 = 𝜎′𝑥𝑥 and 𝜀𝑣 = 𝑑𝛿𝑥∕𝑑𝑥. The theory of linear poroelasticity shows that for this particular
1D case with a constant applied stress, the total stress in the domain is a constant,−𝜎0, and the pore pressure is decoupled
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from the stress field. The effective stress and the displacement change with time due to the fluid-to-solid coupling. The
analytical solution for the excess pressure field subject to boundary and initial conditions given in Equations (2)–(13)39 is

𝑝(𝑥, 𝑡) =
4𝛾𝜎0
𝜋

∞∑
𝑚=0

1

2𝑚 + 1
exp

[
−(2𝑚 + 1)2𝜋2𝑡

4𝐿2

]
sin

[
(2𝑚 + 1)𝜋𝑥

2𝐿

]
. (8)

As time increases, the excess pressure decreases, the load is transferred from the pore fluid (water) to the solid skeleton,
and the specimen consolidates.

2.1.2 Case 2: Periodic load on a finite layer

This case considers a harmonic load applied on top of a finite thickness layer as reported in Refs. [39] and [41]. The periodic
load can represent dynamic stress transfer from earthquakes, tides, or seasonal water-level variations above an aquifer.
Analogously to Terzaghi’s problem, we consider a 1D saturated soil/rock layer of thickness 𝐿 (see Figure 1). The governing
equation for the excess pressure in this case is given by:

𝜕𝑝

𝜕𝑡
=  𝜕2𝑝

𝜕𝑥2
− 𝛾

𝑑𝜎𝑥𝑥
𝑑𝑡

, (9)

where the rate of change of total vertical stress on the right-hand side provides the solid-to-fluid coupling that wasmissing
in the classical Terzaghi problem. The periodic load boundary condition is:

𝜎𝑥𝑥(0, 𝑡) = −𝜎0𝑒
𝚤𝜔𝑡, (10)

in which 𝚤 =
√
−1 and 𝜔 is the period of the harmonic load variation. Because of Equation (3), 𝜎𝑥𝑥(𝑥, 𝑡) = 𝜎𝑥𝑥(0, 𝑡). The

boundary conditions for pressure 𝑝 and displacement 𝛿𝑥 are:

𝛿𝑥(0, 𝑡) = 0; (11)

𝜕𝑝

𝜕𝑥

||||𝑥=𝐿 = 0; (12)

𝑝(0, 𝑡) = 0. (13)

The solution will have form:39, 41

𝑝(𝑥, 𝑡) = ℝ
{
�̃�(𝑥)𝑒𝚤𝜔𝑡

}
, (14)

where ℝ{⋅} corresponds to the real part of the solution and the complex amplitude �̃�(𝑥) is expressed as:

�̃�(𝑥) = 𝛾𝜎0

[
1 + tanh

(
𝐿

√
𝚤𝜔


)
sinh

(
𝑥

√
𝚤𝜔


)
− cosh

(
𝑥

√
𝚤𝜔


)]

. (15)

The pressure field will thus be physically represented by the real part of �̃�(𝑥)𝑒𝚤𝜔𝑡, see Equation (14) and details in Ref. [41].

2.2 Solute transport

We consider transport of a fully dissolved ideal tracer. The tracer is instantaneously injected into the soil sample and the
spatiotemporal evolution of the concentration field 𝑐(𝑥, 𝑡) is assumed to be governed by the ADE:

𝜕(𝜙(𝑥, 𝑡)𝑐(𝑥, 𝑡))

𝜕𝑡
+
𝜕(𝑞(𝑥, 𝑡)𝑐(𝑥, 𝑡))

𝜕𝑥
=

𝜕

𝜕𝑥

[
𝜙(𝑥, 𝑡)𝐷(𝑥, 𝑡)

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥

]
, (16)
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where 𝜙(𝑥, 𝑡) is the porosity, 𝑞(𝑥, 𝑡) is the specific discharge, and 𝐷(𝑥, 𝑡) is the hydrodynamic dispersion coefficient. From
the pressure field for cases 1 and 2 (see Equations 8 and 14), we can compute the specific discharge 𝑞(𝑥, 𝑡) according to
Darcy’s equation:

𝑞(𝑥, 𝑡) = −
𝑘

𝜇

𝜕𝑝(𝑥, 𝑡)

𝜕𝑥
, (17)

where 𝑘 is the permeability and 𝜇 is the fluid’s absolute viscosity. Both 𝑘 and 𝜇 are considered to be constants. The bound-
ary and initial conditions for the transport problem are as follows:

𝜕𝑐

𝜕𝑥

||||𝑥=0 = 0; (18)

𝜕𝑐

𝜕𝑥

||||𝑥=𝐿 = 0; (19)

𝑐(𝑥, 0) = 𝑓(𝑥). (20)

Note that 𝑓(𝑥) can assume any functional shape. Moreover, the ADE presented in Equation (16) accounts for coefficients
that vary in space and time. This is an outcome of the flow conditions described in cases 1 and 2.

3 SOLUTIONMETHODOLOGY FOR TRANSPORT

To solve Equations (16)–(20), wewill make use of the generalized integral transform technique (GITT).35, 37 This technique
has been employed to study scalar dynamics in environmental flows.36, 46, 47 We apply the GITT for the first time to study
solute transport in coupled geomechanics and fluid flow problems. As summarized in Ref. [35], the GITT is based on the
following steps:

1. development of the integral transform pair and choice of the associated eigenvalue problem;48
2. application of the integral transform to the ADE to obtain a system of coupled ordinary differential equations (ODEs);
3. numerical solution of the system of coupled ODEs for the transformed potentials; and
4. application of the inversion formula to compute the concentration field.

For our study, we consider porosity 𝜙 as a constant based on the arguments described in Appendix A. We thus rewrite
Equation (16) as follows:

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
+ 𝑐(𝑥, 𝑡)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+ 𝑢(𝑥, 𝑡)

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥

= 𝐷0
𝜕2𝑐(𝑥, 𝑡)

𝜕2𝑥
+ �̌�(𝑥, 𝑡)

𝜕2𝑐(𝑥, 𝑡)

𝜕2𝑥
+
𝜕𝑐(𝑥, 𝑡)

𝜕𝑥

𝜕�̌�(𝑥, 𝑡)

𝜕𝑥
,

(21)

where we decomposed the dispersion coefficient as 𝐷(𝑥, 𝑡) = 𝐷0 + �̌�(𝑥, 𝑡) and 𝑢(𝑥, 𝑡) = 𝑞(𝑥, 𝑡)∕𝜙 represents the inter-
stitial velocity. 𝐷0 is the constant molecular diffusion coefficient, and �̌�(𝑥, 𝑡) is the mechanical dispersion coefficient
calculated as �̌�(𝑥, 𝑡) = 𝛼|𝑢(𝑥, 𝑡)|, where 𝛼 is the constant dispersivity.49
The integral transform and its inverse are defined as:

𝑐𝑖(𝑡) = ∫
𝐿

0

Ψ̃𝑖(𝑥)𝑐(𝑥, 𝑡) 𝑑𝑥; (22)

𝑐(𝑥, 𝑡) =

∞∑
𝑖=0

Ψ̃𝑖(𝑥)𝑐𝑖(𝑡); (23)

where 𝑐𝑖(𝑡) is the transformed scalar and

Ψ̃𝑖(𝑥) =
1√
𝑁𝑖

Ψ𝑖(𝑥), (24)
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where Ψ𝑖(𝑥) and 𝑁𝑖 denote the 𝑖th eigenfunction and norm originating from the eigenvalue problem given below:

𝑑2Ψ𝑖(𝑥)

𝑑2𝑥
= 𝜆2

𝑖
Ψ𝑖(𝑥), (25)

𝑑Ψ𝑖(𝑥)

𝑑𝑥

||||𝑥=0 = 0, (26)

𝑑Ψ𝑖(𝑥)

𝑑𝑥

||||𝑥=𝐿 = 0, (27)

where 𝜆2
𝑖
= 𝜁2

𝑖
∕𝐷0 and 𝜆𝑖 denote the eigenvalues. The solution for Ψ𝑖(𝑥) and 𝜆𝑖 are given by:50

Ψ𝑖(𝑥) = cos(𝜆𝑖𝑥); (28)

𝜆𝑖 =
𝑖𝜋

𝐿
, 𝑖 = 0, 1, … ,∞, (29)

with norm 𝑁𝑖:

𝑁𝑖 =

{
𝐿 if 𝑖 = 0
𝐿

2
if 𝑖 ≠ 0.

)
(30)

Our next step consists ofmultiplying Equations (21) and (20) by Ψ̃𝑖(𝑥) and integrating over the domain 𝑥 ∈ [0, 𝐿]. Applying
the boundary conditions and solving all the integral terms (see Appendix B for details), we obtain the system of coupled
ODEs

𝑑𝑐𝑖(𝑡)

𝑑𝑡
= −

𝑁∑
𝑗=0

𝑐𝑗(𝑡)𝑈𝑖𝑗(𝑡) −

𝑁∑
𝑗=0

𝑐𝑗(𝑡)𝐴𝑖𝑗(𝑡) − 𝜁2𝑐𝑖(𝑡) −

𝑁∑
𝑗=0

𝑐𝑗(𝑡)𝐵𝑖𝑗(𝑡), (31)

𝑐𝑖(0) = ∫
𝐿

0

Ψ̃𝑖(𝑥)𝑓(𝑥) 𝑑𝑥, (32)

in which the temporally variable coefficients 𝑈𝑖𝑗(𝑡), 𝐴𝑖𝑗(𝑡), and 𝐵𝑖𝑗(𝑡) are defined as

𝑈𝑖𝑗(𝑡) = ∫
𝐿

0

Ψ̃𝑖(𝑥)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
Ψ̃𝑗(𝑥) 𝑑𝑥, (33)

𝐴𝑖𝑗(𝑡) = ∫
𝐿

0

𝑢(𝑥, 𝑡)Ψ̃𝑖(𝑥)
𝑑Ψ̃𝑗(𝑥)

𝑑𝑥
𝑑𝑥, (34)

𝐵𝑖𝑗(𝑡) = ∫
𝐿

0

�̌�(𝑥, 𝑡)
𝑑Ψ̃𝑖

𝑑𝑥

𝑑Ψ̃𝑗

𝑑𝑥
𝑑𝑥. (35)

Note that Equations (31) and (32) form a system of 𝑁 coupled ODEs and the corresponding 𝑁 initial conditions, where
𝑁 is the number of eigenvalues. The value of 𝑁 is chosen to be large enough to reach convergence of the solution. The
system of coupled ODEs is numerically solved using theMathematica’s51 built-in function NDSolve to find the unknowns
𝑐𝑖(𝑡) for 𝑖 = 0, 1, 2, … ,𝑁. Once the solution for 𝑐𝑖(𝑡) is obtained, we invoke the inversion formula (Equation 23) to compute
𝑐(𝑥, 𝑡). For completeness, we include the system of coupled ODEs for the case with variable porosity in Appendix C.
Due to the GITT’s computationally hybrid features,37 we can derive semianalytical expressions for the solute plume’s

spatial moments. Making use of Equation (23), the zeroth moment (i.e., mass) is calculated as:

𝜇(0)(𝑡) = ∫
𝐿

0

𝜙𝑐(𝑥, 𝑡) 𝑑𝑥 = 𝜙

𝑁∑
𝑖=0

𝑐𝑖(𝑡)∫
𝐿

0

Ψ̃𝑖(𝑥) 𝑑𝑥. (36)
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Inserting Equation (28) into Equation (36), we get:

𝜇(0)(𝑡) = 𝜙

[
𝑐0(𝑡)𝐿 +

𝑁∑
𝑖=1

𝑐𝑖(𝑡)
𝐿 sin(𝜋𝑖)

𝜋𝑖

]
. (37)

The first moment (i.e., location of the plume’s centroid) is similarly obtained as:

𝜇(1)(𝑡) =
1

𝜇(0)(𝑡) ∫
𝐿

0

𝜙𝑥𝑐(𝑥, 𝑡) 𝑑𝑥 =
1

𝜇(0)(𝑡)
𝜙

𝑁∑
𝑖=0

𝑐𝑖(𝑡)∫
𝐿

0

𝑥Ψ̃𝑖(𝑥) 𝑑𝑥. (38)

Utilizing Equations (28) and (37), the first moment can be rewritten as:

𝜇(1)(𝑡) =

𝑐0(𝑡)
𝐿2

2
+

𝑁∑
𝑖=1

𝑐𝑖(𝑡)
𝐿2[𝜋𝑖 sin(𝜋𝑖)+cos(𝜋𝑖)−1]

𝜋2𝑖2

𝑐0(𝑡)𝐿 +
𝑁∑
𝑖=1

𝑐𝑖(𝑡)
𝐿 sin(𝜋𝑖)

𝜋𝑖

. (39)

The second noncentral moment is given by:

𝜇(2)(𝑡) =
1

𝜇(0)(𝑡) ∫
𝐿

0

𝜙𝑥2𝑐(𝑥, 𝑡) 𝑑𝑥 =

𝑁∑
𝑖=0

𝑐𝑖(𝑡)
𝐿∫
0

𝑥2Ψ̃𝑖(𝑥) 𝑑𝑥

𝑁∑
𝑖=0

𝑐𝑖(𝑡)
𝐿∫
0

Ψ̃𝑖(𝑥) 𝑑𝑥

. (40)

Substituting Equation (28) and carrying out the integration in Equation (40), we have:

𝜇(2)(𝑡) =

𝑐0(𝑡)
𝐿3

3
+

𝑁∑
𝑖=1

𝑐𝑖(𝑡)
𝐿3((𝜋2𝑖2−2) sin(𝜋𝑖)+2𝜋𝑖 cos(𝜋𝑖))

𝜋3𝑖3

𝑐0(𝑡)𝐿 +
𝑁∑
𝑖=1

𝑐𝑖(𝑡)
𝐿 sin(𝜋𝑖)

𝜋𝑖

. (41)

Finally the second central moment (i.e., spreading with respect to the plume’s centroid position) is given by:

𝜇
(2)
𝑐 (𝑡) = 𝜇(2)(𝑡) − 𝜇(1)(𝑡)𝜇(1)(𝑡), (42)

where 𝜇(1)(𝑡) and 𝜇(2)(𝑡) are provided in Equations (39) and (41).

4 ILLUSTRATION

In this section, we computationally implement the semianalytical solution to study transport for the flow configurations
in cases 1 and 2 described in Section 2 with the input parameters reported in Table 1. The considered fluid is water, while
the parameters characterizing the porous media have been chosen to resemble an aquifer.16, 39 Without loss of generality,
for all computational results, we assume the following Gaussian form for the initial condition in Equation (20):

𝑓(𝑥) =
1√
2𝜋𝜎𝑐

𝑒
−
(𝑥−𝜇𝑐)

2

2𝜎2𝑐 , (43)

where 𝜇𝑐 = 𝐿∕2 and 𝜎𝑐 = 0.4. All results are reported in dimensionless form.
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TABLE 1 Input parameters used in the simulations

Parameter Symbol Value Unit Calculated as
Fluid compressibility 𝑐𝑓 4.55 × 10−10 Pa−1 –
Molecular diffusion 𝐷0 10−9 m2∕s –
Gravity 𝑔 9.81 m∕s2 –
Hydraulic conductivity 𝐾ℎ 10−5 m∕s –
Length of the domain 𝐿 10 m –
Skempton’s coefficient 𝑆𝑘 0.7 – –
Dispersivity 𝛼 0.1 m –
Porosity 𝜙 0.2 – –
Fluid viscosity 𝜇 10−3 Pa × s –
Undrained Poisson’s ratio 𝜈𝑢 0.4 – –
Fluid density 𝜌𝑓 103 kg∕m3 –
Applied load 𝜎0 5.5 × 105 Pa –
Soil compressibility 𝑐𝑚 6.12 × 10−8 Pa−1 16

Consolidation coefficient  1.66 × 10−2 m2∕s 𝑘∕(𝜇𝑆)

Permeability 𝑘 10−12 m2 (𝐾ℎ𝜇)∕(𝑔𝜌𝑓)

Specific storage 𝑆 4.55 × 10−10 Pa−1 𝜙𝑐𝑓 + 𝑐𝑚

Loading efficiency 𝛾 0.54 – (𝑆𝑘(1 + 𝜈𝑢))∕(3(1 − 𝜈𝑢))

F IGURE 2 Convergence analysis at different dimensionless times 𝑡∕𝐿2 and locations 𝑥∕𝐿. Error estimates provided by percentage error
for increasing number of eigenvalues 𝑁 according to Equation (44)

4.1 Results for case 1

4.1.1 Verification with numerical solution and convergence analysis

We start by performing a convergence analysis on the GITT solution to determine the number of eigenvalues𝑁 needed to
compute Equation (31). We analyzed the output of concentration for increasing𝑁 at three different times in four locations
in the domain. The error was calculated at every considered location 𝑥∗ and time 𝑡∗ as:

(𝑛) =
|||||||
𝑐(𝑥∗, 𝑡∗)

|||𝑁=𝑛 − 𝑐(𝑥∗, 𝑡∗)
|||𝑁=100

𝑐(𝑥∗, 𝑡∗)
|||𝑁=100

||||||| × 100. (44)

The results depicted in Figure 2 show that the solution converges for 𝑁 approximately equal to 40. As expected, the
larger errors are observed for lower values of 𝑁 at early times (compare Figure 2A with Figure 2B-C). In all cases, the
results show that the solution converges for 𝑁 ≳ 35.
In Figure 3, we verify our semianalytical results against a fully numerical solution for Equation (21) subject to the

boundary and initial conditions provided in Equations (18)–(20) and (43). The numerical solution for the ADE is based
on𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎’s built-in function NDSolve. The numerical PDE (partial differential equation) solver NDSolve uses the
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F IGURE 3 Verification of the GITT results against a fully numerical solution at different dimensionless times

method of lines in conjunctionwith the finite differencesmethod. The concentration 𝑐(𝑥, 𝑡)has been normalized using the
peak concentration at 𝑡 = 0, defined as𝐶0. As shown in Figure 3, our integral-transform solution is in good agreementwith
the numerical result. The shape of the solution suggests that diffusion plays an important role in the transport process. We
observe lower concentration gradients at later times. This is aligned with the experimental observations in Ref. [52] where
a slower loading rate experiment, which allowed additional time for diffusion, resulted in lower concentration gradients
within the slurry column.

4.1.2 Computational results

Next we investigate how the keymetrics characterizing the concentration field are impacted by the soil compressibility 𝑐𝑚,
porosity 𝜙, and Skempton’s coefficient 𝑆𝑘. The analysis was performed by increasing and decreasing the selected param-
eters by a factor of 20%, denoted as 𝜖. With the exception of the varying parameter, all the other quantities remained the
same for all simulations. For the Terzaghi’s problem, the solute plume moves until the excess pore pressure is completely
dissipated; after then the only contribution to transport is given by molecular diffusion. This is clearly visible in Figure 4,
where both first and second central spatial moments do not change for 𝑡∕𝐿2 ≳ 12.
The results obtained for the first moment 𝜇(1) (Figure 4A-C) show that variations in 𝑐𝑚 and 𝑆𝑘 have similar effects on

the spatial moments, leading to the center of mass moving faster and further if they increase, and slower otherwise, while
an increase in 𝜙 causes the flow field to slow down and thus obstacles the movement of the center of mass. Moreover,
the response of the solute plume due to variations in 𝑐𝑚 and 𝑆𝑘 seems almost symmetrical, i.e., increasing or decreasing
the parameters by the same factor cause 𝜇(1) to increase or decrease in a similar way. On the other hand, increasing 𝜙
has a lesser impact on 𝜇(1) than decreasing it, as visible in Figure 4B where the red area is smaller than the yellow one.
Analogous results are obtained for the second central moments 𝜇(2)𝑐 , meaning that variations that cause an increase in 𝜇(1)

lead to an increase in 𝜇(2)𝑐 as well, and vice versa. These results can be explained by the expression for the velocity field
𝑢(𝑥, 𝑡) obtained from Equations (8) and (17). In fact, an increase in 𝑐𝑚 will result in an increase in specific storage 𝑆 and,
consequently, a decrease in the consolidation coefficient  (see Table 1). This will slow down the dissipation of the excess
pore pressure, thus allowing the solute plume to travel more before stopping completely. A similar effect is caused by an
increase in 𝑆𝑘, which will lead to an increase in the loading efficiency 𝛾 that will, in turn, increase the absolute module of
the velocity field, allowing the solute plume to travel faster. Note that from the relation 𝑢(𝑥, 𝑡) = 𝑞(𝑥, 𝑡)∕𝜙, it is possible
to understand why an increase in 𝜙 leads to effects that are opposite compared to the effects of increasing 𝑐𝑚 or 𝑆𝑘.
A quantity of interest in risk assessment is the solute plume’s peak concentration 𝑐𝑝𝑒𝑎𝑘, which accounts for the maxi-

mum level of contamination. As visible in Figure 5, the sensitivity of the peak concentration to variations in the selected
parameters depends on the time of interest: at early times, especially for variations in 𝑐𝑚, 𝑐𝑝𝑒𝑎𝑘 is not affected by such vari-
ations, while at late times we can observe a nearly 10% change in the peak concentration. Another interesting observation
is that the effect of uncertainty in geomechanical parameter values, especially 𝑐𝑚, is not symmetric around the base case
𝜖 = 0. In other words, if the base case is overestimating the true value of 𝑐𝑚, then the effect of this error will disappear
with time faster than if the base case were underestimating the true value of 𝑐𝑚. This analysis shows that geomechanical
parameters can significantly impact risk assessment in contaminated sites.
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F IGURE 4 Temporal evolution of the solute plume’s spatial moments. Results shown for different values of the vertical medium com-
pressibility 𝑐𝑚, porosity 𝜙, and Skempton coefficient 𝑆𝑘

F IGURE 5 Effect of ±20% variations 𝜖 in 𝑐𝑚, 𝜙, and 𝑆𝑘 on the solute plume’s peak concentration 𝑐𝑝𝑒𝑎𝑘 at different times

4.2 Results for case 2

4.2.1 Constant and variable D and verification with numerical solution

Now we present transport predictions for the case of a periodic load characterized by a frequency 𝜔. Similar to previous
works on transport in temporally fluctuating flows,53 we will illustrate our results with a constant mechanical dispersion
coefficient �̌� = 𝛼|�̄�| with 𝛼 denoting the dispersivity (see Table 1) and �̄� computed as:

�̄� =
2𝜔

𝐿 ∫
1∕2𝜔

0
∫

𝐿

0

𝑢(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (45)

where the temporal average is taken over a semiperiod.
To examine the consequences of the constant �̌� assumption, we compute the concentration with a spatially and tem-

porally variable �̌�. We compare the results for the concentration field obtained for a constant and variable mechanical
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F IGURE 6 Values of 𝑐(𝑥, 𝑡)∕𝐶0 in space at three different times (left) and values of 𝑐(𝑥, 𝑡)∕𝐶0 in time at three different locations (𝑥∕𝐿 =
0.5, 0.55, and 0.6) (right) for constant and variable �̌�

F IGURE 7 Verification of the GITT solution against a fully numerical solution for constant (left) and variable (right) �̌�

dispersion (Figure 6). As visible in Figures 6A and 6B, some differences are noted between these two cases; however, the
effects of variable dispersion are not significant for the range of parameters explored in this study. Our results show that the
constant �̌� assumption allows to capture the general transport behavior of the plume. For completeness, Figure 7 includes
the comparison between the GITT solution and a fully numerical solution obtained byMathematica’s built-in differential
equation solver NDSolve.51 As observed in Figure 7, both solutions are in good agreement for constant (Figure 7A) and
variable (Figure 7B) dispersion.

4.2.2 Computational results

Next, we consider the computation of the solution for �̌� = 2.0 × 10−6m2∕s (calculated using Equation 45 and 𝜔 = 7.3 ×

10−5𝑠−1). Figure 8 shows the oscillatory behavior of the solute plume throughout the domain, while Figure 9 illustrates the
concentration signal versus time at two locations (𝑥∕𝐿 = 0.5 and𝑥∕𝐿 = 0.6) for different values of𝜔. The selected values of
𝜔 are based on±10% perturbation on the reference𝜔 = 7.3 × 10−5 s−1. It is observed that𝜔 has a significant impact on the
concentration signal. Furthermore, the results in Figure 9A show that the changes in the angular frequencymainly affects
the concentration values at early times and becomes negligible after a few periods. On the other hand, Figure 9B shows
that the effects of 𝜔 on 𝑐(𝑥, 𝑡) are prolonged in time if we monitor the concentration breakthrough curve at a different
position in space (compared with Figure 9A). The results in Figures 8 and 9 suggest the importance of periodic loading in
controlling the magnitude of the concentration.
Finally, Figure 10 shows the effects of𝜔 on the first and second central spatialmoments of the solute plume.As expected,

both spatial moments oscillate in time. Variations in 𝜔 do not affect the first moment, while it seems that the spread of the
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F IGURE 8 Spatial distribution of the concentration at different times. All results displayed in dimensionless form

F IGURE 9 Temporal evolution of the solute concentration at two different locations (𝑥∕𝐿 = 0.5 and 𝑥∕𝐿 = 0.6) for different 𝜔 values. All
results displayed in dimensionless form

solute plume is enhanced by lower angular frequencies, as suggested by the higher values of the second central moment
for a decrease in 𝜔.

5 CLOSING REMARKS

This study develops an integral transform-based solution to predict the concentration field in a deformable porous
medium. We show how the concentration field is affected by the flow-geomechanics coupling effect for two classical
problems: Terzaghi’s problem and a porous medium undergoing a periodic load. In both cases, the geomechanical defor-
mation induces a spatially and temporally variably Darcy-scale velocity field. As a consequence, the ADE is characterized
by coefficients that vary in both space and time that renders challenging to develop a fully analytical solution for the con-
centration field. To overcome this difficulty, we propose to solve the ADE with a hybrid numerical-analytical approach
known as the GITT.35 The results obtained with our proposed methodology showed good agreement with the results
obtained from purely numerical solutions. A key characteristic of the GITT is its hybrid numerical-analytical feature. As
opposed to other numerical methods that attempt to solve the governing PDEs, our proposed solution for the concentra-
tion field requires solving an ODE system, which reduces the numerical effort. Also, since there are many ODE solvers
available, our solution has a lower implementation effort than development of coupled PDE solver. Due to the analytical
features of our solution, it is straightforward to derive the temporal evolution of the spatial moments of the concentration
field. The proposed GITT solution can also be employed as a benchmark tool to validate existing numerical solutions. In a
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F IGURE 10 Temporal evolution of the first (left) and second central (right) spatialmoments of the solute plume for different𝜔. All results
displayed in dimensionless form

future extension of this work, we plan to consider transport through transversely isotropic media54, 55 that show different
mechanical and flow behaviors along and across the bedding plane.
This paper also presents the sensitivity of key transport metrics to selected geomechanical parameters such as 𝑐𝑚 and

𝑆𝑘 for the Terzaghi problem. Our results show that geomechanical properties can affect transport both at the global (i.e.,
spatial moments of the solute plume) and at the local scale (i.e., resident concentration). We note that the sensitivity of
the solute concentration to the selected geomehcanics parameters becomes even more relevant at late times, when a 20%
variation in the chosen parameter can cause a 5% variation in the solute plume’s peak concentration. This result shows
the importance of accounting for geomechanical deformations in risk analysis that, in general, consists of estimating the
peak concentration.56 Our analysis highlights the importance of allocating resources toward improved characterization
of geomechanical parameters, such as 𝑆𝑘 and 𝑐𝑚, which are often times neglected in hydrological analysis. Finally, the
results for the case of periodic load, which is representative of dynamic stress transfer from earthquakes, tides, or sea-
sonal water level variations, reveal that 𝜔 has an impact on the concentration signal, especially at early times. On the
other hand, the relative importance of 𝜔 will depend on the considered location where the concentration signal is being
investigated. While varying 𝜔 does not affect the first moment of the solute plume, it seems to have an impact on the
second central moment, enhancing the spreading of the solute for lower angular frequencies. This indicates that coupling
between transport and geomechanical processes can contribute to enhanced solute mixing after earthquakes or other
time-dependent loads.
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APPENDIX A: DISCUSSION ON POROSITY
Let the Eulerian or “true” porosity at time 𝑡 be defined as 𝜙(𝑡) = 𝑉𝑝(𝑡)

𝑉𝑏(𝑡)
, where 𝑉𝑝 and 𝑉𝑏 are the pore and bulk volumes.

The mass balance equation for the solid component of the porous body is

𝜕[(1 − 𝜙)𝜌𝑠]

𝜕𝑡
+ ∇ ⋅ [(1 − 𝜙)𝜌𝑠𝒗𝒔] = 0, (A.1)

where 𝜌𝑠 is the solid density and 𝒗𝒔 is the solid skeleton velocity defined as the time rate of change of displacement.
Applying the chain rule and dividing by 𝜌𝑠 yields

1 − 𝜙

𝜌𝑠

𝜕𝜌𝑠
𝜕𝑡

−
𝜕𝜙

𝜕𝑡
+
1 − 𝜙

𝜌𝑠
∇𝜌𝑠 ⋅ 𝒗𝒔 + ∇ ⋅ [(1 − 𝜙)𝒗𝒔] = 0. (A.2)

The change in volume of the solid grains of the porous medium, which is subject to the change in total stress Δ𝜎𝑣 and
pressure change Δ𝑝, is the sum of two parts: the change due to Δ𝑝 acting on (1 − 𝜙)𝑉𝑏 and the change due to Δ𝜎𝑣 + Δ𝑝

acting on 𝑉𝑏, both with a compressibility given by 1∕𝐾𝑠. This gives us the constitutive relation for 𝜌𝑠 as a function of 𝜎𝑣
and 𝑝, which can be differentiated in time,

1

𝜌𝑠

𝜕𝜌𝑠
𝜕𝑡

= −
1

𝐾𝑠

1

(1 − 𝜙)

(
𝜕𝜎𝑣
𝜕𝑡

+ 𝜙
𝜕𝑝

𝜕𝑡

)
. (A.3)

https://doi.org/10.1002/nag.3150


16 BONAZZI et al.

Substitute Equation (A.3) in (A.2), using the effective stress principle, 𝜎𝑣 = 𝐾𝑑𝑟𝜀𝑣 − 𝑏𝑝, where 𝐾𝑑𝑟 is the drained bulk
modulus related to 𝐾𝑣, and neglecting the product of the solid density gradient and the solid skeleton velocity, which is
small for geomaterials, we obtain:

−
𝑑𝜙

𝑑𝑡
−
𝐾𝑑𝑟

𝐾𝑠

𝜕𝜀𝑣
𝜕𝑡

+
𝑏 − 𝜙

𝐾𝑠

𝜕𝑝

𝜕𝑡
+ (1 − 𝜙)∇ ⋅ 𝒗𝒔 = 0, (A.4)

where 𝑑𝜙

𝑑𝑡
=

𝜕𝜙

𝜕𝑡
+ ∇𝜙 ⋅ 𝒗𝒔 has been used. Since ∇ ⋅ 𝒗𝒔 = 𝜕𝜀𝑣∕𝜕𝑡 and 𝑏 = 1 − (𝐾𝑑𝑟∕𝐾𝑠), we obtain

𝑑𝜙

𝑑𝑡
= (𝑏 − 𝜙)

𝜕𝜀𝑣
𝜕𝑡

+
𝑏 − 𝜙

𝐾𝑠

𝜕𝑝

𝜕𝑡
, (A.5)

which can be integrated in time to yield,

𝜙 = 𝑏 − (𝑏 − 𝜙0) exp (−𝜀𝑣 − Δ𝑝∕𝐾𝑠). (A.6)

When the exponential term is expanded in an infinite series and all second- and higher-order terms are dropped, the above
equation reduces to

Δ𝜙 = 𝜙 − 𝜙0 = (𝑏 − 𝜙0)𝜀𝑣 +
𝑏 − 𝜙0
𝐾𝑠

Δ𝑝. (A.7)

This shows that changes in porosity must be small,32 eg, Δ𝜙 ∼ (10−2) because the solid modulus is much larger than the
typical change in pressure encountered during subsurface flow, 𝐾𝑠 ∼ (1010) Pa and Δ𝑝max ∼ (106) Pa, and, from the
infinitesimal strain definition of 𝜀, 𝜀𝑣 ∼ (10−2). Equation (A.7) is analogous to Equation(28) in Ref. [17] for small changes
in porosity. The Eulerian ADE under coupled flow and geomechanics is

𝜕(𝜙𝑐)

𝜕𝑡
+ ∇ ⋅ (𝒒𝑐 − 𝜙𝐷∇𝑐) = 0 (A.8)

which is Equation (16) written for a 3D domain. Applying the chain rule we obtain

𝜙
𝜕𝑐

𝜕𝑡
+ ∇ ⋅ (𝒒𝑐) − 𝜙𝐷∇2𝑐 = 𝐷∇𝜙 ⋅ ∇𝑐 − 𝑐

𝜕𝜙

𝜕𝑡
, (A.9)

which shows the spatial and temporal fluctuations of porosity as source terms for the transport process.32 Neglecting these
fluctuations, as justified above, we obtain the ADE of Equation (21).

APPENDIX B: DERIVATION OF THE SYSTEM OF COUPLED ODEs
Assuming a constant porosity 𝜙(𝑥, 𝑡) = 𝜙, the ADE becomes:

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
+
𝜕(𝑢(𝑥, 𝑡)𝑐(𝑥, 𝑡))

𝜕𝑥
=

𝜕

𝜕𝑥

[
𝐷(𝑥, 𝑡)

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥

]
, (B.1)

where 𝑢(𝑥, 𝑡) = 𝑞(𝑥, 𝑡)∕𝜙. Multiplying the ADE by Ψ̃𝑖(𝑥) and integrating in space leads to:

∫
𝐿

0

Ψ̃𝑖(𝑥)
𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥 + ∫

𝐿

0

Ψ̃𝑖(𝑥)𝑐(𝑥, 𝑡)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥 + ∫

𝐿

0

Ψ̃𝑖(𝑥)𝑢(𝑥, 𝑡)
𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥

=∫
𝐿

0

Ψ̃𝑖(𝑥)𝐷0
𝜕2𝑐(𝑥, 𝑡)

𝜕2𝑥
𝑑𝑥 + ∫

𝐿

0

Ψ̃𝑖(𝑥)
𝜕�̌�(𝑥, 𝑡)

𝜕𝑥

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
+ ∫

𝐿

0

Ψ̃𝑖(𝑥)�̌�(𝑥, 𝑡)
𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
.

(B.2)



BONAZZI et al. 17

Using Equation (22), the first term in Equation (B.2) is given by:

∫
𝐿

0

Ψ̃𝑖(𝑥)
𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥 =

𝜕

𝜕𝑡 ∫
𝐿

0

Ψ̃𝑖(𝑥)𝑐(𝑥, 𝑡) 𝑑𝑥 =
𝜕𝑐𝑖(𝑡)

𝜕𝑡
. (B.3)

The second term in Equation (B.2) can be computed as:

∫
𝐿

0

Ψ̃𝑖(𝑥)𝑐(𝑥, 𝑡)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥 = ∫

𝐿

0

Ψ̃𝑖(𝑥)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥

(
∞∑
𝑗=0

Ψ̃𝑗(𝑥)𝑐𝑗(𝑡)

)
𝑑𝑥 =

∞∑
𝑗=0

𝑐𝑗(𝑡)𝑈𝑖𝑗(𝑡), (B.4)

where

𝑈𝑖𝑗(𝑡) = ∫
𝐿

0

Ψ̃𝑖(𝑥)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
Ψ̃𝑗(𝑥) 𝑑𝑥. (B.5)

As for the third term in Equation (B.2), we use Equation (23) to obtain:

∫
𝐿

0

Ψ̃𝑖(𝑥)𝑢(𝑥, 𝑡)
𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥 = ∫

𝐿

0

𝑢(𝑥, 𝑡)Ψ̃𝑖(𝑥)
𝜕

𝜕𝑥

(
∞∑
𝑗=0

Ψ̃𝑗(𝑥)𝑐𝑗(𝑡)

)
𝑑𝑥 =

∞∑
𝑗=0

𝑐𝑗(𝑡)𝐴𝑖𝑗(𝑡), (B.6)

where

𝐴𝑖𝑗(𝑡) = ∫
𝐿

0

𝑢(𝑥, 𝑡)Ψ̃𝑖(𝑥)
𝜕Ψ̃𝑗(𝑥)

𝜕𝑥
𝑑𝑥. (B.7)

The fourth term of Equation (B.2) is evaluated using integration by parts in conjunction with the boundary conditions in
Equations (18)–(19), (26)–(27), and (25):

∫
𝐿

0

Ψ̃𝑖(𝑥)𝐷0
𝜕2𝑐(𝑥, 𝑡)

𝜕2𝑥
𝑑𝑥 = 𝐷0 ∫

𝐿

0

𝑐(𝑥, 𝑡)
𝜕2Ψ̃𝑖(𝑥)

𝜕𝑥2
𝑑𝑥 = −𝜁2𝑐𝑖(𝑡). (B.8)

As for the last two terms in Equation (B.2), we integrate by parts and apply the boundary conditions in Equations (18)–(19):

∫
𝐿

0

Ψ̃𝑖(𝑥)
𝜕�̌�(𝑥, 𝑡)

𝜕𝑥

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
+ ∫

𝐿

0

Ψ̃𝑖(𝑥)�̌�(𝑥, 𝑡)
𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
= −∫

𝐿

0

�̌�(𝑥, 𝑡)
𝜕Ψ̃𝑖(𝑥)

𝜕𝑥

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥. (B.9)

Applying the inverse from Equation (23), we have:

− ∫
𝐿

0

�̌�(𝑥, 𝑡)
𝜕Ψ̃𝑖(𝑥)

𝜕𝑥

𝜕

𝜕𝑥

(
∞∑
𝑗=0

Ψ̃𝑗(𝑥)𝑐𝑗(𝑡)

)
𝑑𝑥 = −

∞∑
𝑗=0

𝑐𝑗(𝑡)𝐵𝑖𝑗(𝑡), (B.10)

where

𝐵𝑖𝑗(𝑡) = ∫
𝐿

0

�̌�(𝑥, 𝑡)
𝜕Ψ̃𝑖(𝑥)

𝜕𝑥

𝜕Ψ̃𝑗(𝑥)

𝜕𝑥
𝑑𝑥. (B.11)

Therefore, Equation (B.2) becomes:

𝑑𝑐𝑖(𝑡)

𝑑𝑡
= −

∞∑
𝑗=0

𝑐𝑗(𝑡)𝑈𝑖𝑗(𝑡) −

∞∑
𝑗=0

𝑐𝑗(𝑡)𝐴𝑖𝑗(𝑡) − 𝜁2𝑐𝑖(𝑡) −

∞∑
𝑗=0

𝑐𝑗(𝑡)𝐵𝑖𝑗(𝑡), (B.12)
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where 𝑈𝑖𝑗(𝑡), 𝐴𝑖𝑗(𝑡), and 𝐵𝑖𝑗(𝑡) are defined in Equations (B.5), (B.7) and (B.11). To solve the equation, we also need an
initial condition, which is provided by the integral transform of the initial condition in Equation (20):

𝑐𝑖(0) = ∫
𝐿

0

Ψ̃𝑖(𝑥)
𝑒
−
(𝑥−𝜇𝑐)

2

2𝜎2𝑐√
2𝜋𝜎𝑐

𝑑𝑥. (B.13)

APPENDIX C: SOLUTION FOR A VARIABLE POROSITY
Similar to Appendix B, we provide steps necessary to derive the coupled system of ODEs for the case of a variable porosity,
which is relevant for soft or loosely consolidated rocks that are highly stress-sensitive. Multiplying Equation (21) for Ψ̃(𝑥)
and integrating over the domain, we obtain:

∫
𝐿

0

Ψ̃𝑖(𝑥)𝜙(𝑥, 𝑡)
𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥 + ∫

𝐿

0

Ψ̃𝑖(𝑥)𝑐(𝑥, 𝑡)
𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥 + ∫

𝐿

0

Ψ̃𝑖(𝑥)𝑞(𝑥, 𝑡)
𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥

=∫
𝐿

0

Ψ̃𝑖(𝑥)𝜙(𝑥, 𝑡)𝐷0
𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
𝑑𝑥 + ∫

𝐿

0

Ψ̃𝑖(𝑥)𝜙(𝑥, 𝑡)�̌�(𝑥, 𝑡)
𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
𝑑𝑥

+∫
𝐿

0

Ψ̃𝑖(𝑥)𝐷0

𝜕𝜙(𝑥, 𝑡)

𝜕𝑥

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥 + ∫

𝐿

0

Ψ̃𝑖(𝑥)
𝜕𝑐(𝑥, 𝑡)

𝜕𝑥

𝜕

𝜕𝑥

(
�̌�(𝑥, 𝑡)𝜙(𝑥, 𝑡)

)
𝑑𝑥,

(C.1)

defining for simplicity a function:

𝐹(𝑥, 𝑡) = 𝜙(𝑥, 𝑡)�̌�(𝑥, 𝑡). (C.2)

Performing all the integrations and using the boundary conditions defined in Equations (18)–(19) and (26)–(27), we obtain:

∞∑
𝑗=0

𝑑𝑐𝑗(𝑡)

𝑑𝑡
𝑃𝑖𝑗(𝑡) = −

∞∑
𝑗=0

𝑐𝑗(𝑡)𝑄𝑖𝑗(𝑡) −

∞∑
𝑗=0

𝑐𝑗(𝑡)𝑅𝑖𝑗(𝑡) − 𝐷0

∞∑
𝑗=0

𝑐𝑗(𝑡)𝑀𝑖𝑗(𝑡) −

∞∑
𝑗=0

𝑐𝑗(𝑡)𝑊𝑖𝑗(𝑡), (C.3)

where the only unknown is the term 𝑐𝑖(𝑡). In Equation (C.3), we have:

𝑃𝑖𝑗(𝑡) = ∫
𝐿

0

Ψ̃𝑖(𝑥)𝜙(𝑥, 𝑡)Ψ̃𝑗(𝑥) 𝑑𝑥; 𝑄𝑖𝑗(𝑡) = ∫
𝐿

0

Ψ̃𝑖(𝑥)
𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
Ψ̃𝑗(𝑥) 𝑑𝑥;

𝑅𝑖𝑗(𝑡) = ∫
𝐿

0

𝑞(𝑥, 𝑡)Ψ̃𝑖(𝑥)
𝜕Ψ̃𝑗(𝑥)

𝜕𝑥
𝑑𝑥; 𝑀𝑖𝑗(𝑡) = ∫

𝐿

0

𝜙(𝑥, 𝑡)
𝜕Ψ̃𝑖(𝑥)

𝜕𝑥

𝜕Ψ̃𝑗(𝑥)

𝜕𝑥
𝑑𝑥;

𝑊𝑖𝑗(𝑡) = ∫
𝐿

0

𝐹(𝑥, 𝑡)
𝜕Ψ̃𝑖(𝑥)

𝜕𝑥

𝜕Ψ̃𝑗(𝑥)

𝜕𝑥
𝑑𝑥. (C.4)


	Transport analysis in deformable porous media through integral transforms
	Abstract
	1 | INTRODUCTION
	2 | PHYSICAL FORMULATION
	2.1 | Coupled flow and geomechanics
	2.1.1 | Case 1: Terzaghi’s problem
	2.1.2 | Case 2: Periodic load on a finite layer

	2.2 | Solute transport

	3 | SOLUTION METHODOLOGY FOR TRANSPORT
	4 | ILLUSTRATION
	4.1 | Results for case 1
	4.1.1 | Verification with numerical solution and convergence analysis
	4.1.2 | Computational results

	4.2 | Results for case 2
	4.2.1 | Constant and variable D and verification with numerical solution
	4.2.2 | Computational results


	5 | CLOSING REMARKS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	APPENDIX A: DISCUSSION ON POROSITY
	APPENDIX B: DERIVATION OF THE SYSTEM OF COUPLED ODEs
	APPENDIX C: SOLUTION FOR A VARIABLE POROSITY


