InterPore2021

Contribution ID: 579

Type: Oral Presentation

Upscaling of a Cahn-Hilliard Navier-Stokes Model including Precipitation in a Thin Strip

Tuesday, 1 June 2021 11:45 (15 minutes)

Multiphase flow and reactive transport are important in many applications, in particular in porous media. We consider the incompressible flow of two immiscible fluids in the presence of a solid phase changing due to precipitation and dissolution. We employ a ternary phase-field model on the pore scale, extending widespread models for two fluid phases by including a solid phase.

We upscale this model in the geometry of a thin strip. In the context of porous media the thin strip can be seen as the representation of a single pore throat. For scale separation we introduce β as the ratio between width and length of the strip. Using asymptotic expansions we investigate $\beta \rightarrow 0$ under moderate assumptions on Peclet number and Capillary number. The resulting multi-scale model consists of upscaled equations for total flux and ion transport, while the phase field equation has to be solved in cell-problems on the pore scale to determine the position of interfaces.

We also investigate the sharp interface limit of the multi-scale model. Here the diffuse interface width ε approaches zero and a sharp interface model is recovered. The resulting model consists only of Darcy-scale equations, as the cell-problems can be solved explicitly. The model is of hyperbolic nature, and we use numerical results to investigate the validity of the upscaling when discontinuities form in the upscaled model.

Time Block Preference

Time Block A (09:00-12:00 CET)

References

Acceptance of Terms and Conditions

Click here to agree

Newsletter

Student Poster Award

Primary authors: VON WOLFF, Lars (University of Stuttgart); POP, Iuliu Sorin (Hasselt University)

Presenter: VON WOLFF, Lars (University of Stuttgart)

Session Classification: MS7

Track Classification: (MS7) Mathematical and numerical methods for multi-scale multi-physics, non-linear coupled processes