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Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway
equation for multiphase flow through porous domains. With pressure p being the primary variable, it equates
\begin{align}
\partial_t S(p) -\nabla\cdot[\mathbf{\bar{K}} \, \kappa(S(p))\, (\nabla p - \mathbf{g})]= f(s,\mathbf{x},t), \tag{1}
\end{align}
where S : [−∞,∞] → [0, 1] is the increasing saturation function, κ : [0, 1] → [0, 1] is the relative permeabil-
ity function, �K the absolute permeability tensor, g the gravitational acceleration, and f the reaction/absorption
term. Apart from having nonlinear advection/reaction/diffusion components, Richards equation also exhibits
both parabolic-hyperbolic (at S(p) = 0 since κ(S(p)) = 0) and parabolic-elliptic (at S(p) = 1 since
S′(p) = 0) type of degeneracies. Further challenges in its numerical treatment comes from the heterogeneity
in �K.

In this study, we provide fully computable, locally space-time efficient, and reliable a posteriori error bounds
[1] for numerical solutions of the fully degenerate Richards equation: if p is the exact solution of (1) and phτ
is a known approximate solution, then for a composite distance metric dist(·, ·) it holds that
\begin{align}
\underline{\eta}(p_{h\tau})\leq \mathrm{dist}(p,p_{h\tau})\leq \bar{\eta}(p_{h\tau}), \tag{2}
\end{align}
where both η(·) and η̄(·) are fully computable, and a version of the lower bound holds in any space-time sub-
domain. The bounds are proven in a variation of theH1(H−1)∩L2(L2)∩L2(H1) norm which corresponds
to the minimum regularity inherited by the exact solutions, thus avoiding further smoothness assumptions
like in [2]. For showing the upper bound, error estimates are derived individually for the H1(H−1), L2(L2)
and theL2(H1) error components with amaximum principle and a novel degeneracy estimator being used for
the last one. Local and global space-time efficient error bounds are obtained following [3]. Error contributors
such as flux and time non-conformity, quadrature, linearisation, data oscillation are identified and separated.
The estimates also work in a fully adaptive space-time discretization and linearisation setting.

To investigate the effectiveness of the estimators, numerical tests are conducted for non-degenerate and degen-
erate cases having exact solutions. It is shown that the estimators correctly identify the errors, both spatially
and temporally, up to a factor in the order of unity. Finally, to demonstrate the prowess of the estimators, a
degenerate problem is analyzed in a heterogeneous, anisotropic domain with discontinuous initial condition
and mixed boundary conditions.
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