
➢ Wild-type variant formed dendritic, continuous 
pellicles;

➢ eps- formed deformed, discrete pellicles; due to 
activation of other related genes of eps operon;

➢ Wrinkled, channelized topology of the Wild-type 
pellicle could be hydrophobic (Werb et al., 2011).

Viscosity & EPS Composition

❑ Bacillus subtilis is well-known for certain PGPR (Plant Growth Promoting Rhizobacteria)
qualities, but the exact mechanism(s) in influencing evaporation and water retention is
not well understood;

❑ As a stress-tolerant bacteria, Bacillus subtilis can produce visco-elastic biofilm to cope
with the fluctuating soil water conditions. This, in turn, can affect the hydraulic and
interfacial properties of soil;

❑ Identifying key missing links between the important physicochemical traits of the early-
stage biofilm and EPS (Extra-cellular Polymeric Substances) of Bacillus subtilis and soil
physical and hydraulic properties is the motivation of this work;

❑ Research outcomes may contribute to developing biological strategies to increase soil
water retention and crop production in arid regions.

❑ To investigate water percolation and evaporation from sand inoculated with EPS-

producing B. subtilis strain FB17 (wild-type) and its EPS-knockout mutant (eps-);

❑ To elucidate the mechanisms by which the physicochemical properties of EPS affect
water-related physical and hydrological properties of sand.
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❑ Treatments: Wild-type (B. subtilis, FB17) and eps- (EPS-knockout mutant).

❑ Column experiments:
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Results – Percolation & Water Distribution

➢ Inoculation with both the wild-type and eps- mutant reduced 
percolation rate;

➢ Bacteria-treated columns showed heterogeneous water 
distribution pattern whereas water distribution in the control 
was homogeneous;

➢ The results suggest hydraulic decoupling.

Evaporation & Water Retention

➢ Both bacterial strains increased water retention of a fine sand during both
upward (evaporation) and downward (percolation) flow of water;

➢ Interrupted capillarity, decreased wetting and hydraulic decoupling are likely the
causative mechanisms for these observations;

➢ Structural development is not an essential mechanism in EPS-driven water
retention at the early-stages of biofilm formation;

➢ The results clearly demonstrate the effects of surface tension, viscosity and their
interplay on water behavior in bacteria-treated media;

➢ The similar effects observed for both the wild-type and mutant strains of B.
subtilis highlight the complexity and our limited understanding on the
mechanisms through which PGPRs mediate changes in soil water status.
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➢ Higher critical drying front depth (Lc) in the control than in the 
treatment columns;

➢ Less cumulative evaporation from the treatments;

➢ No distinct evaporation phase transition between phase I and phase II;

➢ Wild-type strain-treated sand retained the most water towards the 
drier end of the WRC (from 15% water content).

Pellicle Formation & SEM Imaging

Contact Angle and Surface Tension
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➢ Both strains increased contact angle of treated sand and reduced surface tension of LB solution; 

➢ Water droplet persistency showed reduced wetting or hydraulic stabilization by the wild-type.
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➢ Increased viscosity or viscous dissipation length (𝐿𝑉) lowered evaporative loss 
by reducing the critical drying front depth (Lc):

➢ Higher contact angle and lower surface tension of the strains disrupted the 
water-film connectivity to reduce evaporation loss according to the Young-
Laplace equation:  

➢ The dampening effect of viscosity maintained the connectedness at the drier 
end (occurrence of Rayleigh instability in the presence of EPS at low Reynold’s 
number).

➢ The interplay between surface tension and 

visco-elasticity led to complex changes in water 

retention and flow in treated sand.
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Possible Mechanisms 

➢ G’ > G” means 
more elastic;

➢ G*= Total 
viscosity;

➢ Wild-type EPS is 
more visco-elastic 
than the mutant;

➢ Carbohydrate 
compositions are 
similar.

▪ Column dimension: ø4.37x9.66 cm;

▪ Sand size: 0.297-0.42 mm;

▪ Bacterial conc: 7x107 CFU/g;

▪ Initial water content (w/w): 5%;  

▪ Infiltration amount: 20 ml dye water 

(~ field capacity water content).
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❑ Complementary Measurements:

▪ Water retention curve (WRC);

▪ Pellicle assay;

▪ Scanning electron microscope (SEM) imaging;

▪ Contact angle, viscosity & surface tension.

Water Retention Curve
Carbohydrate compositions
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