Title: A discrete element model (DEM) for swelling behavior of clay

Author: Srutarshi Pradhan, Researcher, PoreLab, NTNU, Trondheim, Norway

and Martin Alexander Toresen, Master Student, PoreLab, NTNU, Trondheim, Norway

Email: srutarshi.pradhan@ntnu.no

Abstract:

Swelling of Shale-rocks create several problems [1] during underground drilling operations, such as stuck-pipe/drill-bit. However, swelling of shale-rocks can close the gaps between rock (wellbore) and casing –therefore no cementing is needed – which can save a lot of time and money and such a "natural" closing ensures "no-leakage" during further drilling and production phases. The field experience reveals that some shale-rocks are good candidate for swelling and some are not. It is believed that, amount of clay is the most important factor for shale-swelling. There are several other parameters that can influence the swelling behavior, such as- porosity, quartz contents, clay-cluster distribution, stress difference between field and drilling zone etc. Therefore, to plan a safe and efficient drilling through shale-rocks, we should understand the swelling mechanism of clay.

To investigate swelling of clay, we have introduced a discrete element model (DEM), based on Monte-Carlo technique. We define a probability of swelling for all the clay grains in the shale-rock sample that includes the effect of stress-difference, porosity, temperature etc. The time evolution of grain swelling results in bulk swelling behavior of the sample and the simulation result qualitatively matches [2] with the observations of shale/clay swelling experiments [3,4]. The Monte-Carlo based DEM code has been studied [5] for the entire parameter space by varying several important inputs like porosity, clayquartz contents, stress difference, temperature etc. In addition, the mass-transport phenomenon has been implemented by considering clay grain movement through fractures (flow channels).

References

1.E. Fjær, R. M. Holt, P. Horsrud, A. M. Raaen and R. Risnes, Petrolum Related Rock Mechanics (Elsevier, 2008).

2.S. Pradhan, Swelling behavior of shale/clay: Discrete element modeling, based on Monte-Carlo technique, Interpore 2019, Valencia, Spain.

3. M. Deriszadeh and R.C.K. Wong, Transp Porous Med (2014) 101:35–52 DOI 10.1007/s11242-013-0229-8.

4. E. Rybacki, J. Herrmann, R. Wirth and G. Dresen, Rock Mech Rock Eng (2017) 50:3121–3140.

5. M. A. Toresen, Master thesis on "Computational Modelling of Clay Swelling" 2020-2021, Physics Department, NTNU, Trondheim.