## InterPore2018 New Orleans



Contribution ID: 46

Type: Poster + 3 Minute Pitch

## Colloid-facilitated radionuclide transport through a bead-packed column and direct simulation using lattice-Boltzmann and random walk particle tracking

Wednesday, 16 May 2018 17:01 (2 minutes)

It is well known that the radionuclide-carrying colloids in ground water can facilitate the transport of contaminants in the subsurface. A set of column experiments under physically and chemically heterogeneous conditions was conducted. Pore velocity was maintained below 100 cm/d and solution of CsI and silica colloids (1 micron diameter) was injected through saturated columns. At the same time, pore-scale simulation using lattice Boltzmann (LB) and random-walk particle tracking (RWPT) was used to solve the advection-diffusion equation (ADE) to match the breakthrough curves and dispersion coefficients of column experiment. With high-performance computing, we directly simulated flow and convective transport of non-adsorbing and adsorbing colloids in the entire column (L = 10.3 cm, D = 0.75 cm, resolved by  $169 \times 169 \times 1722$  voxels). We compared not only the dispersion coefficients, but also the breakthrough curves between column experiments and pore-scale simulations for the first time. The latter comparison was enabled by an algorithm that effectively maintained load balance and parallel efficiency.

## References

## Acceptance of Terms and Conditions

Click here to agree

**Primary authors:** Mr CHO, Jae Kyoung (Colorado School of Mines); Mr YIN, Xiaolong (Colorado School of Mines); Mr NEEVES, Keith B. (Colorado School of Mines); Mr WU, Ning (Colorado School of Mines); Mr ROD, Kenton (Pacific Northwest National Laboratory); Mr UM, Wooyong (Pacific Northwest National Laboratory); Mr CHUN, Jaehun (Pacific Northwest National Laboratory)

Presenter: Mr YIN, Xiaolong (Colorado School of Mines)

Session Classification: Parallel 8-A

**Track Classification:** MS 4.10: Evaluation and Optimization of Non-Conservative Transport in Porous Media