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Simulation methods

Our focus:

e Grand Canonical Monte Carlo (GCMC) simulations: adsorption amount of gases (UVT
ensemble), where p is the chemical potential, V is the volume and T is the
temperature.

e Molecular dynamics (MD) simulations: diffusion coefficients of gases (NVT
ensemble), where N is the number of particles.



Monte Carlo simulations

* Probability P, of the system to be found in a state i with energy E, is proportional
to its statistical weight. For example, in an NVT ensemble

E;
P;‘ ~ CXP (—*k—]—_)

e Detailed balance: the probability of being in the state i and transit to the state j
is equal to the probability of being in the state j and transit to the state i.

Pigi—jPimj = Pigj—iPj—i

gi—jPi—j - transition probability
8ij - probability of making an attempt to move from state i to state j

Pi—j - probability of accepting attempted transition



Metropolis algorithm

e Probability of making an attempt to move
gj—»i — gi—>}'

* Probability of accepting attempted transition
Pi—j — I if Ei- < Ef
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J J ;

e Grand canonical ensemble (addition or deletion of particles)
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Molecular dynamics simulations

e Numerical integration of Newton’s equations of motion for a system of particles.

e N-particle system with potential energy

U(F, 7, - 7y) = U(R)

* 3N coupled 2"9-order differential equations.
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* Propagated forward (or backward) in time.

e |nitial coordinates obtained from, e.g., crystal structure, velocities taken at random
from Boltzmann distribution.

e Maintain appropriate temperature by adjusting velocities.



Intermolecular model potential

Lennard-Jones 12—6 potential
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€ governs the strength of the interaction

o defines a length scale
= r =17y —‘r'j

long-range attractive tail of the form — 1/r®
steeply rising repulsive wall at distances less than r ~ ¢.
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Intermolecular model potential

Coulomb energy E = -y~ %
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e Interatomic potentials derived from parametrizations
incorporating structural (X-ray) and spectroscopic data

(NMR)

e Partial charges derived by Mulliken and electrostatic

potential (ESP) analysis of DFT results

Cygan, et al., 2004
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CLAYFF Force Field
charge D; R,
species symbol (e) (kcal/mol) A)
water hydrogen h* 0.4100
hydroxyl hydrogen ho 0.4250
water oxygen o* 0.8200 0.1554 3.5532
hydroxyl oxygen oh —0.9500 0.1554 3.5532
bridging oxygen ob —1.0500 0.1554 3.5532
bridging oxygen with obos —1.1808 0.1554 3.5532
octahedral substitution
bridging oxygen with obts —1.1688 0.1554 3.5532
tetrahedral substitution
bridging oxygen with obss 1.2996 0.1554 3.5532
double substitution
hydroxyl oxygen with ohs 1.0808 0.1554 3.5532
substitution
tetrahedral silicon st 2.1000 1.8405 x 107% 3.7064
octahedral aluminum ao 1.5750 1.3298 x 10~¢ 4.7943
tetrahedral aluminum at 1.5750 1.8405 x 10~¢ 3.7064
octahedral magnesium mgo 1.3600 9.0298 x 1077 5.9090
hydroxide magnesium mgh 1.0500 9.0298 x 10~7 5.9090
octahedral calcium cao 1.3600 5.0298 x 10-¢ 6.2484
hydroxide calcium cah 1.0500 5.0298 x 107¢ 6.2428
octahedral iron feo 1.5750 9.0298 x 10~¢ 5.5070
octahedral lithium lio 0.5250 9.0298 x 107% 4.7257
aqueous sodium ion? Na 1.0 0.1301 2.6378
aqueous potassium ion® K 1.0 0.1000 3.7423
aqueous cesium ion® Cs 1.0 0.1000 4.3002
aqueous calcium ion® Ca 20 0.1000 3.2237
aqueous barium ion? Ba 20 0.0470 4.2840
aqueous chloride ion? Cl -1.0 0.1001 4.9388
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Intramolecular interaction
UR)= Y, Kb —b) + ¥ K0 — 0 + Y tain® + -+

bonds angle dihedrals

The harmonic potential is a Taylor R‘ .

approximation of more elaborate potentials b n :

around the reference bond length /? /E_\)
b= bond length

bo=equilibrium bond length
K, = Spring constant

- | ' 'N(P "
/ positive @
0= bond angle \ ,”) points out
8,= equilibrium bond angle of page

kg =bending constant
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e Usually a cosine series for dihedral interactions.

(wtor=on () kg } (K]

:

(=
=



General classes of clays
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e For tri- (3 divalent cations in the octahedral site) and di-octahedral (2 trivalent cations in the
octahedral site) structural formulae, [T;_,M,][Si,_,Al.]O,,(OH), and [D,_ M, ][Si,_,Al,]O,,(OH),,
then based on the total layer charge, Q = x + z:

- Talcs and pyrophyllite: Q ~ 0.0. Non-swelling hydrophobic clays.
- Smectites: 0.2 < Q < 0.6. Swelling clays, individual platelet size ~um?.

- Vermiculites: 0.6 < Q < 0.9. Swelling clays, individual platelet sizes ~mm?.

- lllites and micas: 0.9 < Q < 1.0. Non-swelling hydrophilic clays. Slipperetal, 2006 10



Water uptake by swelling clays
(Na-montmorillonite)

e Quantitative agreement of simulated water content in clays with experimental data.

e Water shows layered structures.
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Diffusion of water and 1ons in montmorillonite

e MD simulation study (NVT) at 298 K

e Mean square displacement (MSD) versus time

Einstein relation
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Diffusion of water and 1ons in Na-
montmorillonite

e Quantitative agreement of simulated self-diffusion coefficients of water and ions in
clays with experimental data.

e Decrease by about 1-3 orders of magnitude under the extreme confinement compared
to bulk.
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Adsorption of CO2 and CH4 by

montmorillonite in the presence of water

e GCMC simulation study in the presence of pre-
adsorbed water (po,VT or pey,VT)

e Atomistic model gives reasonable agreement
with single-component experimental adsorption
isotherms for CH4 and CO2 molecules
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e Expt. at about 60 °C (open symbols)
e GCMC simulations (solid symbols)

e Water contents: 0.4 (squares),

0.5 (triangles), and 0.55 g/cm3 (circles)
e d=12 A (CO2)

e d=15 A (CH4)
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Adsorption of CO2 and CH4 by
montmorillonite in the presence of water

e Favorability of adsorption of CO2 (and CH4 to a lesser extent) by montmorillonite at
intermediate water contents.
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Favorability of adsorption of CO2 (and CH4 to a
montmorillonite at small basal spacing d.
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Adsorption of CO2/CH4 mixture by
montmorillonite in the presence of water

¢ GCMC simulation study of adsorption of CO2/CH4 mixture in montmorillonite clays in
the presence of water (pre-adsorbed) at 298 K (pco,HcpsVT)-

e The ideal adsorbed solution theory agrees well with the observed adsorption
capacities and selectivities of CO2/CH4 mixture.
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Diffusion of CO2, CH4, and their mixture In
montmorillonite clay hydrates

e The diffusion of CO2 in the interlayers of Na-montmorillonite, at constant loading of

CO2,
compositions.

is not significantly affected by CH4 for the investigated CO2/CH4 mixture

e The presence of adsorbed CO2 molecules, at constant loading of CH4, very significantly
reduces the self-diffusion coefficients of CH4, and relatively larger decreases in those
diffusion coefficients are obtained at higher loadings.
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Adsorption of variably wet scCO2 by
montmorillonite (50 °C and 90 bar)

e GCMC simulation study of adsorption of CO2 and water at reservoir conditions
(Mi20HcoaVT)-

e The intercalation of CO2 in the dehydrated inter-layer is inhibited, followed by the
swelling of the interlayer region due to uptake of water and CO2 as the RH increases.

Clays exposed to wet scCO, at T =323.15 K & P =90 bar
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Diffusion of CO2 in montmorillonite clay
hydrates at 50 °C and 90 bar

e MD simulation study of CO2 and water at reservoir conditions (NVT).

e The diffusion of CO2 in each hydration state is mostly independent of the type of
cation in accordance with the fact that CO2 molecules hardly migrate into the first
hydration shell of the interlayer cations.
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The RDF for species B around A

gA—B(”) =

* p; - number density of atoms B

Radial distribution function (RDF)

1 dN,_,

471'pr2 dr

e dN,_; - average number of

atom B around a central atom A
between the distance of rand r

+dr.
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Conclusions

Clay hydrates at 25 °C
e Quantitative agreement of simulated water uptake and self-diffusion coefficients of
water and ions in clays with experimental data.

C0O2/CH4 mixtures in clay hydrates at 25 °C
e Attributed to their multilayer adsorption, CO2 and methane (to a lesser extent)
molecules also favorably adsorb on clay minerals with intermediate water contents.

e The self-diffusion coefficients of methane in the clay interlayers decrease in the
presence of CO2. No effect of CH4 on CO2.

scCO2 in clay hydrates at 50 °C and 90 bar

e The diffusion of CO2 in each hydration state is mostly independent of the type of cation
in accordance with the fact that CO2 molecules hardly migrate into the first hydration
shell of the interlayer cations.



