## InterPore2018 New Orleans



Contribution ID: 761

Type: Poster + 3 Minute Pitch

## N2, CO2, and Ar adsorption to characterize microand mesopores of shales

Monday, 14 May 2018 15:40 (2 minutes)

The storage and flow mechanisms in shales depend largely on their microstructure. We use two parameters to characterize microstructures, namely specific surface area (SSA) and pore-size distribution (PSD). We use N<sub>2</sub> adsorption at 77K to quantify SSA and PSD of nanopores. There are two limitations of the N<sub>2</sub> adsorption method due to (1) uncertainties in molecular area due to the quadrupole moment of N<sub>2</sub> molecules result in 20% uncertainty in calculated BET SSA, and (2) kinetic restriction of N<sub>2</sub> molecules prevent it to access narrow pores (< 0.7 nm). To circumvent these limitations, we also used other adsorptives, such as CO<sub>2</sub> and Ar, for the measurements.

We present results from adsorption measurements of  $CO_2$  at 273 K and Ar at 77 K on shales and compare them to  $N_2$  adsorption at 77 K. Adsorption measurements with  $CO_2$  at 273 K allows for detailed characterization of ultramicropores (< 0.7 nm), which are inaccessible to  $N_2$  molecules. Our results from  $CO_2$  adsorption reveal significantly larger micropore SSA in comparison to  $N_2$  probed SSA. Ar molecules do not have quadrupole moment and resolve the uncertainties of molecular area for BET calculation.

## References

## Acceptance of Terms and Conditions

Click here to agree

**Primary authors:** JOEWONDO, Nerine (Colorado School of Mines); PRASAD, Manika (Colorado School of Mines)

Presenter: JOEWONDO, Nerine (Colorado School of Mines)

Session Classification: Parallel 2-E

**Track Classification:** MS 1.32: Sorption, Phase Behavior, and Fluid Transport in Fractured Black Shales