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Taylor Dispersion

Some Background...

Taylor dispersion is an old problem; first papers in the
1940s, but made popular by Taylor (1954) and Aris (1956).

It has become the archetype for dispersion because it is a
(conceptually) simple system– Dispersion in a tube.

It is not a mathematically simple system! There have
been literally thousands of papers on this topic, many
devoted to theory.

There are still several unresolved theoretical challenges
with Taylor dispersion.
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Challenges: Example 1

Example of a challenge: Decreasing second moments

For some initial configurations, the second moment can
actually decrease in time. Does this imply that one should
define a negative dispersion coefficient?
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Challenges: Example 2

Example of a challenge: The superposition problem.

Any time-dependent process can be broken into intervals. E.g.
t0 < t < tfinal ⇒ t0 < t < t2 ∪ t2 < t < tfinal . This requires
only that we know the new “initial” condition at t2. But, what
dispersion coefficient do we use for the second time interval?

t1 = 0 min (t = 0 min) t2 = 0 min (t = 250 min)

mol/m3
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Taylor Dispersion

To start: Some Requirements for a Well-Structured Dispersion
Theory

1 The effective dispersion coefficient should be positive.

Avoids inverse heat equations (Weber, 1981)
Avoids incompatibility with macroscale thermodynamics
(Miller et al., 2018).

2 The effective dispersion coefficient should be independent
of the particular initial conditions imposed.

3 Solutions to the effective convection-dispersion equation
should be superposable (Taylor, 1959).

4 Solutions should approach the classical asymptotic values
for the dispersion coefficient.
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Taylor Dispersion

Our Approach.

The details of our analysis are reported in an upcoming
JFM paper (“Preasymptotic Taylor dispersion: Evolution
from the initial condition”)

The approach is outlined roughly as follows.
1 Upscaling using volume averaging theory (VAT).

A perturbation (deviation) type theory.
Closures by developing balances for perturbations.
Integral solutions to closure PDEs

2 Comparisons with direct numerical solutions (DNS).
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Geometry

Initial conditions considered (note 1:10 aspect ration change).

Case A

Case B Case C
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Balance Laws

Microscale Equations

∂cAγ

∂t
=∇ · (DAγ∇cAγ)−∇ · (cAγvγ), x ∈ V 0

γ

B.C.1 −nγκ · (DAγ∇cAγ) = 0, x ∈ A 0
γκ

B.C.2a cAγ(x , t)⇒ 0, x ∈ A 0
γe+, x ∈ A 0

γe−

B.C.2b −nγe · (DAγ∇cAγ)⇒ 0, x ∈ A 0
γe+, x ∈ A 0

γe−

I.C.1 cAγ(x , 0) = ϕA(x), x ∈ V 0
γ

vγ(r) = (0, 0, vz (r)) =

(
0, 0, 2U

(
1− r2

a2

))
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Upscaling

Upscaling

Average

〈ψγ〉γ |(x,t) =

∫
y∈V (x)

ψγ(x + y , t)w(y) dV (y)

Spatial Averaging Theorem

〈∇ψ〉|x = ∇ 〈ψ〉|x +

∫
y∈Aγκ(x)

nγκ(x + y)ψ(x + y)w(y) dA(y)

Decompositons

cAγ(r , t) = 〈cAγ〉γ |(x,t) + c̃Aγ(r , t)

vγ(r) = (0, 0,U) + (0, 0, ṽz (r)) ⇒ ṽz (r) = 2U

(
1

2
− r2

a2

)
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Upscaling

Upscaled Balance Equation: Unclosed

∂〈cAγ〉γ

∂t

∣∣∣∣
(x,t)

=∇ ·
(
DAγ∇ 〈cAγ〉γ |(x,t)

)
−U · 〈cAγ〉γ |(x,t)

−∇ · 〈c̃Aγ ṽγ〉γ |(x,t)︸ ︷︷ ︸
unclosed

B.C. 1a 〈cAγ〉γ |(x,t) = 0, x ∈ A 0
γe+, x ∈ A 0

γe−

B.C. 1b −nγκ · (DAγ ∇〈cAγ〉γ |(x,t)) = 0, x ∈ A 0
γe+, x ∈ A 0

γe−

I.C.1 〈cAγ〉γ |(x,0) = 〈ϕA〉γ |x , x ∈ V 0
γ
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Upscaling

Closure

To complete the upscaling of the problem, one needs to
develop a way of expressing c̃Aγ in terms of the averaged
concentration. This is known as closure.
Process:

A balance (a PDE) for the unclosed quantity is developed.

A solution to the problem is developed.

This solution is substituted into the averaged balance
equation to eliminate c̃Aγ.

Effective macroscale properties often arise in this process.
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Upscaling

Closure: Simplified Problem (Cylindrical Coordinates)

∂c̃Aγ

∂t
=

1

r

∂

∂r

(
rDAγ

∂c̃Aγ

∂r

)
+ DAγ

∂2c̃Aγ

∂z2
− U

∂c̃Aγ

∂z

− ṽz
∂c̃Aγ

∂z
− ṽz

∂〈cAγ〉γ

∂z

∣∣∣∣
(r ,z,t)︸ ︷︷ ︸

source

B.C.1 −DAγ
∂c̃Aγ

∂r

∣∣∣∣
(r ,z)

= 0

B.C.2b c̃Aγ(r , z) = 0

B.C.2b −DAγ
∂c̃Aγ

∂r

∣∣∣∣
(r ,z)

= 0

I.C.1 c̃Aγ(r , z , 0) = ϕ̃A(r , z)︸ ︷︷ ︸
source
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Upscaling

Closure: Integral Solutions via Green’s Functions

After some simplification (primarily a separation of length
scales such that a� L0, where L0 is the length of the IC)

c̃Aγ(r , z , t) = bA(r , t)
∂〈cAγ〉γ

∂z
+ ΦAγ(r , z , t)

bAγ and ΦAγ are known as closure variables. These functions
are defined by

bA(r , t) = −
τ=t∫
τ=0

ζ=∞∫
ζ=−∞

ρ=a∫
ρ=0

GA(r , ρ, z, ζ, t − τ)ṽz (ρ)ρdρdζdτ

ΦAγ(r , z, t) =

ζ=∞∫
ζ=−∞

ρ=a∫
ρ=0

GA(r , ρ, z, ζ, t − τ)ϕ̃A(ρ, ζ)ρdρdζ
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Upscaling

Closed Macroscale Balance

∂〈cAγ〉γ

∂t

∣∣∣∣
(z,t)︸ ︷︷ ︸

accumulation

= D∗Aγ(t)
∂2〈cAγ〉γ

∂z2

∣∣∣∣
(z,t)︸ ︷︷ ︸

diffusive transport

−U
∂〈cAγ〉γ

∂z

∣∣∣∣
(z,t)︸ ︷︷ ︸

convective transport

− s∗Aγ(z , t)︸ ︷︷ ︸
non-conventional

source

+B.C.’s and I.C.

Effective Parameters:

s∗Aγ(z , t) =

〈
ṽz
∂ΦA

∂z

〉γ
D∗Aγ(t) = DAγ − 〈ṽzbA〉γ
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Closure Solutions

Closure: Solutions– Straightforward but tedious

The problem now is to determine the functions s∗Aγ(z , t)
and D∗Aγ(t)

This really means finding the fields bA and ΦA.

This can be done by substituting

c̃Aγ(r , z , t) = bA(r , t)
∂〈cAγ〉γ

∂z
+ ΦAγ(r , z , t)

back into the balance for the deviations.

The result is a set of two linear PDEs.
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Closure Solutions

Solutions for bA and D∗A
Recall:

D∗Aγ(t) = DAγ − 〈ṽz bA〉γ

D∗Aγ(t)

DAγ
=

(
1 +

1

48

U2a2

D2
Aγ

)
H (t)

− 4
U2a2

D2
Aγ

∞∑
n=1

(
J3(λn)

λ2
nJ0(λn)

)2

exp

(
−λ2

n

DAγ

a2
t

)

J1 (λn) = 0, n = 1, 2, 3, ..

Does not depend upon initial
condition!

10-2 100 102 104 10610-5

10-4

10-3

10-2

10-1

Figure: Analytical solution for
dispersion tensor.
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Closure Solutions

Solutions for ΦA and s∗A: Initial conditions

Case A

Case B Case C
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Closure Solutions

Solutions for ΦA and s∗A: Initial
condition C

ϕA(r , z) = c0R1(r)Z1(z) + c0R2(r)Z2(z)

Z1(z) = α1 exp

(
−

(z − β1)2

σ2
1

)
Z2(z) = α2 exp

(
−

(z − β2)2

σ2
2

)

R1(r) =


1, 0 ≤ r ≤

a

2

0,
a

2
< r ≤ a

R2(r) =


0, 0 ≤ r ≤

a

2

1,
a

2
< r ≤ a
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Closure Solutions

Solutions for ΦA and s∗A: Initial condition C

Recall: s∗Aγ(z, t) =
〈

ṽz
∂ΦA
∂z

〉γ
s∗A(z, t) = −4c0U

[
σ1α1(z − Ξ1(t)− β1)(

σ2
1 + 4DAt

) 3
2

exp

(
−

(z − Ξ1(t)− β1)2

σ2
1 + 4DAt

)

−
σ2α2(z − Ξ2(t)− β2)(

σ2
2 + 4DAt

) 3
2

exp

(
−

(z − Ξ2(t)− β2)2

σ2
2 + 4DAt

)]

×
∞∑

n=1

J1(λn/2)J3(λn)

λ2
nJ2

0 (λn)
exp

(
−
λ2

nDA

a2
t

)

Ξ1(t) =

{
7
4

Ut − 1
2

U t
3
2√
t∗
d

, for t < t∗d ,
(

t∗d = a2

4DAγ

)
Ξ1(t∗d ) + U(t − t∗d ), for t ≥ t∗d

Ξ2(t) =

{
3
4

Ut + 1
6

U t
3
2√
t∗
d

, for t < t∗d

Ξ2(t∗d ) + U(t − t∗d ), for t ≥ t∗d
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Closure Solutions

Solutions for s∗A: Initial condition C

Figure: Pe = 10 (left) and Pe = 100 (right).
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Applications 1: Strictly positive dispersion coefficient

Microscale Solutions from DNS: Initial condition C
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Applications 1: Strictly positive dispersion coefficient

Comparison: DNS versus Upscaled Averaged Concentrations

Figure: Pe = 10 (left) and Pe = 100 (right). Errors are ≤ 7% for worst
case (Pe = 100).
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Applications 1: Strictly positive dispersion coefficient

Comparison: Second Centered Moment
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Applications 2: Superposition

A Two Step Problem (Superposition)

[Regarding the] Eulerian diffusion equation in which the diffu-
sion coeffcient varied with the time since the diffusing material
had been concentrated. It seems to me that this is an illogical
conception. The one thing that seems to be agreed, whatever
theory one may have about diffusion, is that diffusing distribu-
tions are superposable. If therefore you attempt to analyse the
distribution of concentration from two sources which started at
different times by this method, it would be necessary to assume,
in places where the distributions overlapped, that the diffusion
constant had two different values at the same time and at the
same point in space.
–Taylor (1959)
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Applications 2: Superposition

A Two Step Problem (Superposition)

S1 : 0 < t1 < tM

S2 : 0 < t2 < tF − tM

Problem 1: 0 < t1 < 250 min

∂〈cAγ〉γ

∂t
= D∗Aγ(t)

∂2〈cAγ〉γ

∂z2
− U

∂〈cAγ〉γ

∂z
− s∗Aγ

I.C.1 〈cAγ〉γ |(z,0) = c0Z1(z)

Problem 2: 0 < t2 < 750 min

∂〈cAγ〉γ

∂t
= D∗Aγ(t)

∂2〈cAγ〉γ

∂z2
− U

∂〈cAγ〉γ

∂z
− s∗Aγ

I.C.1 〈cAγ〉γ |(z,0) = S1(z , 250)
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Applications 2: Superposition

A Two Step Problem (Superposition)- Initial Conditions

Figure: Initial conditions. First step (left). Second step
(t2 = 0, t = 250), Right.
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Applications 2: Superposition

A Two Step Problem (Superposition)- D∗A(t) and s∗A(z , t)
Fields

0 200 400 600 800 1000
0

50

100

150

200

0 200 400 600

0

50

100

150

200

Figure: Two step fields. D∗A(t) (left). s∗A(z , t) (right).
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Applications 2: Superposition

A Two Step Problem (Superposition)- Second Moment

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025
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Conclusions

We presented a new method for handling Taylor
dispersion near the early time relaxation.

Our approach directly addressed the four desirable
properties for a dispersion theory

1 Positive.
2 Independent of initial conditions.
3 Superposable.
4 Gives classical asymptotic values.

There was good correspondence between DNS and the
1-dimensional effective theory.
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Estimate of Errors: Closure Error

O
(
DAγ∇c̃Aγ −U c̃Aγ − ṽγ〈cAγ〉γ

)
� O

(
−ṽγ c̃Aγ + 〈ṽγ c̃Aγ〉γ

)
ε1(z, t) =

 〈∣∣ṽz c̃Aγ −
〈
ṽz c̃Aγ

〉γ ∣∣〉γ〈∣∣Uc̃Aγ

∣∣+
∣∣∣DAγ

∂c̃Aγ

∂z

∣∣∣+
∣∣∣DAγ

∂c̃Aγ

∂r

∣∣∣+
∣∣ṽz 〈cAγ〉γ

∣∣〉γ + ε0

× 100


εclosure(t) =

1

Aε(t)

z=L∫
z=0

1

2
ε2

1(z, t)dz

Aε(t) =

z=L∫
z=0

ε1(z, t)dz
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Estimate of Errors: Closure Errors

Brian Wood1, Ehsan Taghizadeh1, Fransisco Valdés-Parada2 — Taylor Dispersion 3/5



References Error Analysis

Error Analysis

Estimate of Errors: Observed Model Error

εmodel(t) = max
z

(
|〈cAγ〉γDNS − 〈cAγ〉γVAT|

max
z

(〈cAγ〉γDNS)
× 100

)

Figure: Observed model error. Pe = 10 (left). Pe = 100 (right).
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Applications

Comparison: Skewness at Long Times (DNS)
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